期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
A Brief Discussion on the Perforation of Steel Plates Impacted by Flat-Nosed Projectiles
1
作者 YANG Lanfu WEN Heming 《高压物理学报》 北大核心 2025年第6期55-63,共9页
A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless emp... A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties. 展开更多
关键词 theoretical model flat-nosed projectile steel plate PERFORATION ballistic limit residual velocity
在线阅读 下载PDF
A Numerical and Theoretical Study on the Perforation of Aluminum Plates Struck by Flat-Nosed Projectiles
2
作者 L.F.Yang H.M.Wen 《Acta Mechanica Solida Sinica》 2025年第4期570-587,共18页
It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,whi... It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,which is related to a change in the mode of failure.No theoretical model has so far explained this phenomenon satisfactorily.This paper presents a combined numerical and theoretical study on the perforation of 2024-T351 aluminum plates struck by flat-nosed projectiles.First,numerical simulations are performed to investigate the failure mechanisms/deformation modes of the aluminum plates.Then,a theoretical model is proposed based on the numerical results and the experimental observations within a unified framework.The model takes into account the main energy absorbing mechanisms and the corresponding energies absorbed are determined analytically.In particular,a dimensionless equation is suggested to describe the relationship between global deformations and impact velocity.It transpires that the model predictions are in good agreement with the test data and the numerical results for the perforation of 2024-T351 aluminum plates struck by rigid flat-nosed projectiles in terms of residual velocity,ballistic limit,relationship between global deformations and impact velocity,and transition of failure modes.It also transpires that the present model can predict the“plateau”phenomenon,which shows a slight increase in ballistic limit as plate thickness increases.Furthermore,the energy absorption mechanisms are discussed on the basis of the theoretical analysis. 展开更多
关键词 Aluminum plate Flat-nosed projectile PERFORATION Energy absorption Numerical simulation Theoretical model
原文传递
A practical formula for penetration depth of rigid projectiles into rock and concrete considering the non-scaling effect
3
作者 Xiaohan Zhang Tianhan Xu Zhen Wang 《Defence Technology(防务技术)》 2025年第11期98-111,共14页
The non-scaling effect on the penetration depth of rigid projectiles is an important issue that must be considered when extending the results of scaled experiments to prototype scenes.In this study,the evolution of th... The non-scaling effect on the penetration depth of rigid projectiles is an important issue that must be considered when extending the results of scaled experiments to prototype scenes.In this study,the evolution of the stress and strain of the target under penetration was analyzed.Expressions for the penetration resistance and penetration depth were obtained based on the conservation equation and continuity condition of the target.The penetration coefficients that characterize the nose shape,target resistance,and non-scaling effect were defined.Simplified calculation methods for the coefficients within the range of rigid projectile penetration were developed.Two methods for estimating the target parameters are proposed.The results show that the non-scaling effect is related to the failure process of the target and depends on the ratio of cavity radius to comminuted region radius.The nose shape coefficient can be approximated as a linear function of the length-to-diameter ratio of the nose.The noseshape coefficient of a flat-nosed projectile is 0.57.The caliber coefficient is related to the projectile diameter and reflects the non-scaling effect,which increases with the projectile diameter.A practical formula for calculating the penetration depth of rigid projectiles considering the non-scaling effect is also proposed.This formula is in good agreement with penetration experiments on rock and concrete. 展开更多
关键词 Penetration depth Rigid projectile Non-scaling effect Nose shape coefficient Caliber coefficient
在线阅读 下载PDF
A position distribution measurement method and mathematical modeling of two projectiles simultaneous hitting target based on three photoelectric encoder detection screens
4
作者 Hanshan Li Zixuan Cao Xiaoqian Zhang 《Defence Technology(防务技术)》 2025年第11期151-168,共18页
To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection scr... To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection screens,and establishes a coordinate calculation model for two projectiles to reach the same detection screen at the same time.The design method of three photoelectric encoder detection screens and the position coordinate recognition algorithm of the blocked array photoelectric detector when projectile passing through the photoelectric encoder detection screen are studied.Using the screen projection method,the intersected linear equation of the projectile and the line laser with the main detection screen as the core coordinate plane is established,and the projectile coordinate data set formed by any two photoelectric encoder detection screens is constructed.The principle of minimum error of coordinate data set is used to determine the coordinates of two projectiles hitting the target at the same time.The rationality and feasibility of the proposed test method are verified by experiments and comparative tests. 展开更多
关键词 Photoelectric encoder detection screen PROJECTILE Matching and recognition Linear laser Position distribution
在线阅读 下载PDF
Hydrodynamic Characteristics and Supercavity Shape of Supercavitating Projectiles Launched with Supersonic Speed 被引量:4
5
作者 Chuang Huang Kaixin Guo +3 位作者 Kan Qin Kai Luo Daijin Li Jianjun Dang 《Journal of Marine Science and Application》 CSCD 2022年第2期24-33,共10页
A supercavitating projectile is launched underwater with supersonic speed,and then,the speed decreases to transonic and subsonic conditions orderly because of the drag coming from surrounding water.The flow regime and... A supercavitating projectile is launched underwater with supersonic speed,and then,the speed decreases to transonic and subsonic conditions orderly because of the drag coming from surrounding water.The flow regime and hydrodynamic characteristics are significantly influenced by the flying speed,the influence laws in supersonic,transonic,and subsonic regions are totally different.These issues aren’t well studied.A numerical model consisting of VOF model,moving frame method and state equation of liquid is established to calculate the compressible supercavitation flow field,and validated by comparing with a published result.The influences of water compressibility and Mach number on supercavity shape and hydrodynamic characteristics are quantitatively summarized.The results show that the flying speed of supercavitating projectiles exerts significant influences on the flow regime,supercavity shape and hydrodynamic characteristics for the transonic and supersonic conditions.With the decrease of flying speed,the drag coefficient decreases gradually,and the dimensions of the supercavity near supercavitating projectiles significantly increases in the high-speed conditions.An underwater bow shock is numerically observed before the disk cavitator in supersonic condition.However,no obvious changes are found for the incompressible water cases with different speeds.For supersonic conditions,the supercavity near supercavitating projectiles of compressible water is smaller than that of incompressible water,the drag coefficient is larger,and the relative difference significantly increases with the flying speed.For the case of Ma 1.214,the relative difference of supercavity diameter at the tail section 3.98%,and the difference of the drag coefficient is 23.90%. 展开更多
关键词 Supersonic projectiles Compressible water Underwater shock wave Supercavity Hydrodynamic characteristics
在线阅读 下载PDF
Numerical simulation of projectiles with different structures penetrating multi-storey concrete target board 被引量:2
6
作者 靳书云 朱倩倩 宁倩慧 《Journal of Measurement Science and Instrumentation》 CAS 2014年第3期1-5,共5页
Because the difference between the acceleration curve of traditional projectile structure and the measured accelera- tion curve is large, refining projectile structure is proposed. After setting up multi-storey concre... Because the difference between the acceleration curve of traditional projectile structure and the measured accelera- tion curve is large, refining projectile structure is proposed. After setting up multi-storey concrete target board penetrated by the projectiles with different structures, the simulations with traditional projectile structure and refining projectile structure are conducted using ANSYS/LS-DYNA, and two acceleration curves are obtained, respectively. And then the target experi- ment that the projectile penetrates eight-storey concrete board is conducted and the measured acceleration curves are ob- tained. By comparing the simulation acceleration curves with the measured acceleration curves, it can be concluded that the acceleration curve with refined projectile structure is closer to the measured curve. Therefore, the simulation curve with re- fined projectile structure is of higher reference value for simulation research. 展开更多
关键词 refined projectile structure LS-DYNA acceleration curve
在线阅读 下载PDF
A novel method for determination of lethal radius for high-explosive artillery projectiles 被引量:2
7
作者 Alan Catovic Elvedin Kljuno 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1217-1233,共17页
A new model has been defined that enables the estimation of the lethal radius(radius of efficiency)of HE(High Explosive)artillery projectiles against human targets.The model is made of several modules:CAD(Computer Aid... A new model has been defined that enables the estimation of the lethal radius(radius of efficiency)of HE(High Explosive)artillery projectiles against human targets.The model is made of several modules:CAD(Computer Aided Design)modeling,fragment mass distribution estimation,fragment initial velocity prediction,fragment trajectory calculation,effective fragment density estimation,and high explosive projectile lethal radius estimation.The results were compared with the experimental results obtained based on tests in the arena used in our country,and the agreement of the results was good.This model can be used in any terminal-ballistics scenario for high explosive projectiles since it is general,parametric,fast and relatively easy to implement. 展开更多
关键词 High explosive projectiles Lethal radius FRAGMENTS Modeling
在线阅读 下载PDF
Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles 被引量:5
8
作者 Yuanchuan SHEN Jianqiao YU +3 位作者 Guanchen LUO Xiaolin AI Zhenyue JIA Fangzheng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1115-1126,共12页
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u... This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach. 展开更多
关键词 Backstepping Dynamic surface control technique Nonlinear systems Observers Sliding mode control Spin-stabilized canard controlled projectiles
原文传递
Envelope of Family of Angled Projectiles and Its Universal Geometric Characteristics 被引量:1
9
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2020年第3期425-430,共6页
Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the univers... Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the universal collective properties of the overarching specificities of families of such parabolas, the envelope. For instance [1] and references within explored the existence of one such envelope, however, even the most recent article [2] overlooked its global hidden properties. Here, we investigate exposing this hidden information. Having the equation of the envelope on hand we introduce its universal characteristics such as its: arc length, enclosed 2D surface area, surface area of the surface-of-revolution about the symmetry axis, and, the volume of the enclosure. Numeric values of these quantities are global as is e.g. the 45<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&deg</span> projectile angle that maximizes the range of a projectile in vacuum irrespective, its initial speed. In our exploratory investigation, we utilize the popular Computer Algebra System (CAS) <em>Mathematica</em><sup>TM</sup> [3] [4] [5]. 展开更多
关键词 Family of Angled projectiles ENVELOPE MATHEMATICA
在线阅读 下载PDF
Decay Analysis of Ge Isotopes Formed in Reactions Induced by Tightly and Loosely Bound Projectiles
10
作者 Amandeep Kaur Kirandeep Sandhu Manoj K.Sharma 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第11期565-577,共13页
The dynamical cluster-decay model (DCM) is employed to investigate the decay of ^(6870)Ge~* compound nuclei formed respectively via tightly (~4He) and loosely (~6He) bound projectiles, using ^(64)Zn target. The study ... The dynamical cluster-decay model (DCM) is employed to investigate the decay of ^(6870)Ge~* compound nuclei formed respectively via tightly (~4He) and loosely (~6He) bound projectiles, using ^(64)Zn target. The study is carried out over a wide energy range (E_(c.m.)~5 MeV to 16 MeV) by including the quadrupole deformations (β_(2i)) and optimum orientations (θ_i^(opt)) of the decaying fragments. The fusion cross-sections, obtained by adding various evaporation channels show nice agreement with the experimental data for ~4He+^(64)Zn reaction. The contribution from competing compound inelastic scattering channel is also analyzed particularly for ^(68)Ge~* nucleus at above barrier energies. On the other hand,the decrement in the fusion cross-sections of ^(70)Ge~* nuclear system is addressed by presuming that ^(65)Zn ER is formed via two different modes:(i) the αn evaporation of ^(70Ge)~* nucleus, and(ii) 1n-evaporation of ^(66)Zn~*nuclear system,formed via breakup and 2n-transfer channels due to halo structure of the ~6He projectile. Besides this, the suppression in2 np evaporation cross-sections suggests the contribution of another breakup and transfer process of ~6He i.e. ~4He+ ^(64)Zn.The contribution of breakup+transfer channels for ~6He+^(64)Zn reaction is duly addressed by applying relevant energy corrections due to the breakup of "~6He" projectile into 2n and ~4He. In addition to this, the barrier lowering, angular momentum and energy dependence effects are also explored in view of the dynamics of chosen reactions. 展开更多
关键词 tightly and loosely BOUND projectiles EVAPORATION RESIDUE BREAKUP and transfer
原文传递
Strain Measurement for Hollow Projectiles During Its Penetration of Concrete Targets
11
作者 王琳 王富耻 +1 位作者 王鲁 李树奎 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期202-205,共4页
Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying str... Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed. 展开更多
关键词 hollow steel projectiles concrete targets PENETRATION strain measurement on-board test-record (system)
在线阅读 下载PDF
Multiple ionization of atoms and molecules impacted by very high-q fast projectiles in the strong coupling regime(q/v > 1)
12
作者 周满 邹贤容 +4 位作者 赵磊 陈熙萌 王诗尧 周旺 邵剑雄 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期252-256,共5页
In this paper, we present a simple theoretical approach to calculate the multiple ionization of big atoms and molecules induced by very high-q fast projectiles in a strong coupling regime (q/v 〉 1). The results obt... In this paper, we present a simple theoretical approach to calculate the multiple ionization of big atoms and molecules induced by very high-q fast projectiles in a strong coupling regime (q/v 〉 1). The results obtained from this approach are in excellent agreement with the available experimental data. A probable scenario of molecular multiple ionization by fast and very high-q projectiles is discussed. The very small computational time required here and the good agreement with the existing experimental data make it a good candidate for studying the multiple ionization of complex molecules under high linear energy transfers. 展开更多
关键词 multiple ionization high-q projectiles strong coupling regime model calculation
原文传递
Research on dynamic stabilityrotational speed range of rolling projectiles with different characteristics
13
作者 王亚飞 于剑桥 +1 位作者 苏晓龙 王林林 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期285-291,共7页
Traditional dynamic stability analyses of the rolling projectiles are mainly based on solving the systems' transfer functions or angular motion' s homogeneous equations to obtain their charac- teristic roots. The so... Traditional dynamic stability analyses of the rolling projectiles are mainly based on solving the systems' transfer functions or angular motion' s homogeneous equations to obtain their charac- teristic roots. The solving processes of these methods are complex and lacking further analysis of the results. To solve this problem, Routh stability criterion is introduced to determine the stability of rolling missiles based on the transfer function model, and an important advantage of this method is that it is unnecessary to solve the system' s characteristic equation. Rotational speed ranges satisfy- ing the dynamic stability of rolling projectiles with four different characteristics are acquired, and the correctness of analysis results is verified by computing the system' s root locus. The analysis results show that the relation between stability and rotational speed for static stable missiles is opposite to that for spin-stabilized projectiles, and the relative size of gyroscopic effect and Magnus effect has an extremely important influence on the trend of the stability of the system with increasing rotational speed. 展开更多
关键词 rolling projectiles dynamic stability rotational speed boundary Routh criterion
在线阅读 下载PDF
VISIOMETRICS OF 2D SHOCK-PLANAR S/F/S CURTAIN INTERACTIONS: VORTEX DOUBLE LAYERS, VORTEX PROJECTILES AND DECAYING STRATIFIED TURBULENCE
14
作者 Norman J. Zabusky Shuang ZhangLaboratory of Visiometrics and Modeling,Department of Mechanical and Aerospace Engineering 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第z1期32-38,共7页
Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. The... Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. These opposite signed layers, formed by shock induced baroclinic deposition of vorticity, "ind" and are strongly affected by secondary reflected shocks and vortex interactions. In our visiometric mode of working, we quantify several of these processes and introduce time epochs to discuss the emerging phenomena and normalizations to scale (collapse) the data at M =1.5 and 2.0. This versatile configuration, easily obtained in the laboratory, allows us to study the formation, evolution and reacceleration of VPs and stratified turbulence and mixing. 展开更多
关键词 visiometrics accelerated inhomogeneous flows (aifs) Richtmyer Meshkov shock curtain baroclinic vorticity generation vortex double layers (VDLs) vortex projectiles (VPs) stratified turbulence
在线阅读 下载PDF
Modeling and Stability Analysis for Dual-Spinning Projectiles with Canards
15
作者 管军 李新华 +1 位作者 易文俊 常思江 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期670-676,共7页
To develop the guided spin-stabilized projectiles with high hit precision,a class of dual-spinning stabilized projectile equipped with canards in atmospheric is studied.The 7 degrees of freedom(DOF) nonlinear equation... To develop the guided spin-stabilized projectiles with high hit precision,a class of dual-spinning stabilized projectile equipped with canards in atmospheric is studied.The 7 degrees of freedom(DOF) nonlinear equations are written in a non-rolling body frame.The work reported here focuses on the ballistic property analysis including the spin rates,incidence angle,ballistic drift and lateral velocity.The dual-spinning projectiles are fundamentally less stable than conventional spin-stabilized projectiles.Hence,the gyroscopic stability is also studied in this paper.Theoretical models are given in this work,and the results of numerical analysis are discussed. 展开更多
关键词 dual-spinning projectiles 7 degrees of freedom(DOF) nonlinear modeling stability analysis
在线阅读 下载PDF
Multiple Ionization Cross Sections of Ne and CO Induced by Very High-<i>q</i>Fast Projectiles (<i>q/v</i>>1)
16
作者 Man Zhou Zhenye Wang +2 位作者 Sufen Li Peng Xu Haoxin Zhou 《Journal of Applied Mathematics and Physics》 2018年第11期2343-2351,共9页
In this paper, we extend our previous work of classical over barrier ionization (COBI) model to study the multiple ionization cross section of Ne and CO molecule collided by very high-q fast projectiles(q/v > 1). T... In this paper, we extend our previous work of classical over barrier ionization (COBI) model to study the multiple ionization cross section of Ne and CO molecule collided by very high-q fast projectiles(q/v > 1). The model gives similar results to the independent-electron-approximation calculation and is in good agreement with experimental data. The very small computational time required makes it a good candidate for studying the multiple ionization of complex molecules under high linear energy transfers. 展开更多
关键词 Multiple Ionization HIGH-Q projectiles Strong Coupling Regime Model Cal-culation
暂未订购
A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy 被引量:19
17
作者 Tao He He-Ming Wen Xiao-Jun Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期1001-1012,共12页
A dynamic spherical cavity-expansion penetration model is suggested herein to predict the penetration and perforation of concrete targets struck normally by ogivalnosed projectiles.Shear dilatancy as well as compressi... A dynamic spherical cavity-expansion penetration model is suggested herein to predict the penetration and perforation of concrete targets struck normally by ogivalnosed projectiles.Shear dilatancy as well as compressibility of the material in comminuted region are considered in the paper by introducing a dilatant-kinematic relation.A procedure is first presented to compute the radial stress at the cavity surface and then a numerical method is used to calculate the results of penetration and perforation with friction being taken into account.The influences of various target parameters such as shear strength,bulk modulus,density,Poisson's ratio and tensile strength on the depth of penetration are delineated.It is shown that the model predictions are in good agreement with available experimental data.It is also shown that the shear strength plays a dominant role in the target resistance to penetration. 展开更多
关键词 Spherical cavity expansion Shear dilatancy Ogival-nosed projectile Concrete target PENETRATION PERFORATION
在线阅读 下载PDF
Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets 被引量:14
18
作者 Xiang-hui Dai Ke-hui Wang +3 位作者 Ming-rui Li Jian Duan Bing-wen Qian Gang Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期800-811,共12页
The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha... The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance. 展开更多
关键词 Elliptical cross-section PROJECTILE PENETRATION Concrete target Dynamic cavity-expansion
在线阅读 下载PDF
Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact 被引量:18
19
作者 Hai-fu Wang Jian-wen Xie +2 位作者 Chao Ge Huan-guo Guo Yuan-feng Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期599-608,共10页
Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel t... Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene. 展开更多
关键词 Reactive material projectile Fuel tank Enhanced damage effect Enhanced ignition mechanism Impact behavior
在线阅读 下载PDF
Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part Ⅰ: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles 被引量:8
20
作者 Hao Wu Xiao-Wei Chen +1 位作者 Li-Lin He Qin Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期933-942,共10页
The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the pe... The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the penetration efficiency of penetrator.Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface,an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile.A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile.The critical value V c0of the initial striking velocity is formulated,and the mass loss of projectile tends to increase weakly nonlinearly with I/N when V0〉V c0,whilst the mass loss is proportional to the initial kinetic energy of projectile when V0 展开更多
关键词 PROJECTILE High-speed penetration Concrete Mass loss Nose-blunting
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部