Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understoo...Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.展开更多
Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various dise...Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various diseases in animal models;however,there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke.This article reviews the progress of exosome applications in stroke treatment.It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation.At present,many studies on exosome-based therapies for stroke are actively underway.Regarding preclinical research,exosomes,as bioactive substances with diverse sources,currently favor stem cells as their origin.Due to their high plasticity,exosomes can be effectively modified through various physical,chemical,and genetic engineering methods to enhance their efficacy.In animal models of stroke,exosome therapy can reduce neuroinflammatory responses,alleviate oxidative stress damage,and inhibit programmed cell death.Additionally,exosomes can promote angiogenesis,repair and regenerate damaged white matter fiber bundles,and facilitate the migration and differentiation of neural stem cells,aiding the repair process.We also summarize new directions for the application of exosomes,specifically the exosome intervention through the ventricular-meningeal lymphatic system.The review findings suggest that the treatment paradigm for stroke is poised for transformation.展开更多
Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis...Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.展开更多
Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal deg...Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in th...BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in the tumor microenvir-onment.Inflammation regulates the expression of programmed death ligand-1(PD-L1)in the immunosuppressive tumor microenvironment and affects im-munotherapy efficacy.Interleukin-17A(IL-17A)is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors.We hypothesized that IL-17A participates in tumor progression by affe-cting the level of immune checkpoint molecules in HCC.The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR,western blotting,and flow cytometry.Mechanistic studies were conducted with gene knockout models and pathway inhibitors.The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells.The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro,and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo.RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner,whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A.IL-17A enhanced the survival of HCC cells in the coculture system.IL-17A increased the viability,G2/M ratio,and migration of HCC cells and decreased the apoptotic index.Cyclin D1,VEGF,MMP9,and Bcl-1 expression increased after IL-17A treatment,whereas BAX expression decreased.The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8+T lymphocyte infiltration in an HCC mouse model.CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapenta-plegic 2 signaling pathway in HCC cells.Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate...Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignancies worldwide,and Helicobacter pylori(HP)infection is a well-established risk factor for its development.Programmed death-ligand 1(PD-L1)expression is a ...BACKGROUND Gastric cancer(GC)is one of the most common malignancies worldwide,and Helicobacter pylori(HP)infection is a well-established risk factor for its development.Programmed death-ligand 1(PD-L1)expression is a crucial biomarker for predicting the efficacy of immune checkpoint inhibitors in cancer treatment.While HP infection and PD-L1 expression in GC may be linked,the relationship between them remains unclear,in part because there have been conflicting results reported from various studies.AIM To perform a meta-analysis to assess the relationship between HP and PD-L1 expression in patients with GC.METHODS A systematic literature review was conducted using PubMed,Embase,Cochrane Library,and Web of Science databases.Observational studies that examined the association between HP infection and PD-L1 expression in patients with GC were included.Odds ratios and 95%confidence intervals were calculated to estimate the association.Heterogeneity was assessed using Cochrane’s Q test and I²statistic.A random-effects model was used due to significant heterogeneity across studies.RESULTS Fourteen studies involving a total of 3069 patients with GC were included.The pooled analysis showed a significant association between HP infection and increased PD-L1 expression in GC tissues(odd ratio=1.69,95%confidence interval:1.24-2.29,P<0.001,I^(2)=59%).Sensitivity analyses confirmed the robustness of these findings.Subgroup analyses did not show significant variation based on geographic region,sample size,or method of PD-L1 assessment.Publication bias was minimal,as shown by funnel plots and Egger’s regression test.CONCLUSION HP infection is associated with increased PD-L1 expression in GC,suggesting that HP status may influence the response to programmed cell death protein 1/PD-L1 blockade therapy.展开更多
BACKGROUND Breast cancer(BC)continues to occupy a leading position in terms of morbidity and mortality from malignant neoplasms among the female population.One of the promising markers associated with BC progression i...BACKGROUND Breast cancer(BC)continues to occupy a leading position in terms of morbidity and mortality from malignant neoplasms among the female population.One of the promising markers associated with BC progression is programmed death ligand 1(PD-L1).Previously,we investigated PD-L1 expression in BC via a new antibody against programmed cell death protein 1 ligand 1(PDCD1 LG1)and reported that high PDCD1 LG1 expression in tumor cells is an independent factor for a high risk of regional metastasis in patients with BC.However,the prognostic significance of PDCD1 LG1 expression in BC stromal cells has not been adequately studied.AIM To study the features of PDCD1 LG1 expression in BC stromal cells and its relationship with BC clinicopathological characteristics.METHODS In a prospective single-center observational study,tumor samples from 148 patients with newly diagnosed BC were examined.The tumor sections were immunohistochemically stained with antibodies against PDCD1 LG1.In the tumor samples,the PDCD1 LG1-positive lymphocyte(PDCD1 LG1+LF)score,presence of nuclear PDCD1 LG1 expression in the LFs,PDCD1 LG1 expression in polymorphic cell infiltrates(PDCD1 LG1+polymorphic cell infiltrates[PCIs]),and cells of the fibroblastic stroma and endothelial cells of the tumor microvessels were assessed.Statistical analyses were performed using Statistica 10.0 software.RESULTS A PDCD1 LG1+LF score≥3 was detected more often at stages N0 and N3 than at N1 and N2(P=0.03).Moderate and pronounced PDCD1 LG1+PCIs and the presence of PDCD1 LG1+fibroblastic stroma were associated with negative estrogen receptor status(P=0.0008 and P=0.03,respectively),human epidermal growth factor receptor 2-positive(HER2+)BC(P<0.00001 and P=0.0005),and luminal B HER2+,non-luminal HER2+and triple-negative BC(P<0.00001 and P=0.004).The risk of metastasis to regional lymph nodes(RLNs)depend on lymphovascular invasion(LVI)and the PDCD1 LG1+LF score.In the absence of LVI and a PDCD1 LG1+LF score<3 or≥3,metastases in RLNs were absent in 66.6%and 93.9%of patients with BC,respectively.In the presence of LVI and a PDCD1 LG1+LF score<3 or≥3,metastases in RLNs were detected in 82.6%and 92.7%of patients with BC,respectively.CONCLUSION The results indicated that the combined assessment of the PDCD1 LG1+LF score and LVI can improve the accuracy of predicting the risk of metastasis to RLNs in patients with BC.展开更多
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ...Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.展开更多
Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their ...Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
Objective:To investigate the anti-tumor effects of an E1B55KD-deleted oncolytic adenovirus,H101,in combination with a humanized anti-PD-1(Programmed cell death protein 1)monoclonal antibody,Camrelizumab.Methods:Anti-t...Objective:To investigate the anti-tumor effects of an E1B55KD-deleted oncolytic adenovirus,H101,in combination with a humanized anti-PD-1(Programmed cell death protein 1)monoclonal antibody,Camrelizumab.Methods:Anti-tumor efficacy of intratumoral injection of H101 or/and intraperitoneal injection of Camrelizumab were evaluated in an immune system humanized NOD Prkdc^(scid) Il2rg^(-/-)mice subcutaneous(S.C.)tumor model,established with human glioblastoma of unknown origin cell line U87-MG,and human bladder cancer cell line T24 and YTS-1.The mechanism by which H101 induced anti-tumor immunity were also investigated.Results:Combining H101 with Camrelizumab demonstrated more potent anti-tumor effects than monotherapy in mouse S.C.tumor model.Increased tumor-infiltrating T cells were observed in the combined treatment group.H101 infection decreased the expression of CD47 in cancer cells,thereby promoting macrophages to phagocytose cancer cells.Following the H101-mediated activation of macrophages,increased levels of cytokines,including TNF,IL-12 and IFN-γwere observed.Moreover,when induced THP-1 cells were co-cultured with H101-treated cancer cells,expression of IFN-γwas increased in T cells.Elimination of IL-12 using an anti-IL-12 antibody abolished IFN-γproduction from T cells.In addition,infection with H101 increased PD-L1 expression in YTS-1 cells.These results suggested that H101 may act synergistically to enhance the therapeutic efficacy of PD-1 blockade in cancer via suppressing CD47 signaling,which may promote macrophages to phagocytose tumor cells and activate CD8^(+)T cells.Conclusion:The combination of H101 with PD-1 blockade exhibits potential as a novel strategy for the treatment of cancer.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
BACKGROUND Irreversible electroporation(IRE)is a novel local tumor ablation approach with the potential to activate the host’s immune system.However,this approach is insufficient to prevent cancer progression,and com...BACKGROUND Irreversible electroporation(IRE)is a novel local tumor ablation approach with the potential to activate the host’s immune system.However,this approach is insufficient to prevent cancer progression,and complementary approaches are required for effective immunotherapy.AIM To assess the immunomodulatory effects and mechanism of IRE combined antiprogrammed cell death protein 1(PD-1)treatment in subcutaneous pancreatic cancer models.METHODS C57BL-6 tumor-bearing mice were randomly divided into four groups:Control group;IRE group;anti-PD-1 group;and IRE+anti-PD-1 group.Tumor-infiltrating T,B,and natural killer cell levels and plasma concentrations of T helper type 1 cytokines(interleukin-2,interferon-γ,and tumor necrosis factor-α)were evaluated.Real-time PCR was used to determine the expression of CD8(marker of CD8+T cells)in tumor tissues of the mice of all groups at different points of time.The growth curves of tumors were drawn.RESULTS The results demonstrated that the IRE+anti-PD-1 group exhibited significantly higher percentages of T lymphocyte infiltration,including CD4+and CD8+T cells compared with the control group.Additionally,the IRE+anti-PD-1 group showed increased infiltration of natural killer and B cells,elevated cytokine levels,and higher CD8 mRNA expression.Tumor volume was significantly reduced in the IRE+anti-PD-1 group,indicating a more pronounced therapeutic effect.CONCLUSION The combination of IRE and anti-PD-1 therapy promotes CD8+T cell immunity responses,leading to a more effective reduction in tumor volume and improved therapeutic outcomes,which provides a new direction for ablation and immunotherapy of pancreatic cancer.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is the most common form of liver cancer that has limited treatment options and a poor prognosis.Transarterial chemoembolization(TACE)is the first-line treatment for intermediate...BACKGROUND Hepatocellular carcinoma(HCC)is the most common form of liver cancer that has limited treatment options and a poor prognosis.Transarterial chemoembolization(TACE)is the first-line treatment for intermediate-stage HCC but can induce tumour hypoxia,thereby promoting angiogenesis.Recent studies suggested that combining TACE with anti-angiogenic therapies and immunotherapy might im-prove efficacy.Lenvatinib,a tyrosine kinase inhibitor,has demonstrated superior outcomes compared to sorafenib,while immune checkpoint inhibitors such as sintilimab show potential when combined with TACE.However,the efficacy and safety of TACE combined with lenvatinib and sintilimab(TACE+SL)compared to TACE with lenvatinib alone(TACE+L)in patients with intermediate-ad-vanced HCC has not yet been investigated.AIM To evaluate the efficacy and safety of TACE+SL therapy in comparison to TACE+L therapy in patients with intermediate-advanced HCC.METHODS A retrospective analysis was performed on patients with intermediate-advanced HCC who received TACE plus lenvatinib with or without sintilimab between September 2019 and September 2022.Baseline characteristics were compared,and propensity score matching was applied.Overall survival(OS),progression-free survival(PFS),and objective response rate(ORR)were evaluated between the two groups,and adverse events were analyzed.RESULTS The study included 57 patients,with 30 in the TACE+SL group and 27 in the TACE+L group.The TACE+SL group demonstrated significantly improved median PFS and OS compared to the TACE+L group(PFS:14.1 months vs 9.6 months,P=0.016;OS:22.4 months vs 14.1 months,P=0.039),along with a higher ORR(70.0%vs 55.6%).After propensity score matching,30 patients were included,with the TACE+SL group again showing longer median PFS and a trend toward improved OS(PFS:14.6 months vs 9.2 months,P=0.012;OS:23.9 months vs 16.3 months,P=0.063),and a higher ORR(73.3%vs 53.3%).No severe adverse events were reported.CONCLUSION TACE+SL demonstrated superior outcomes in terms of OS and PFS,compared to TACE+L.These findings suggest that the addition of sintilimab might enhance the therapeutic response in patients with intermediate-advanced HCC.展开更多
文摘Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
基金supported by the Natural Science Foundation of Chongqing,No.CSTB2023NSCQ-mSX0561(to WL).
文摘Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various diseases in animal models;however,there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke.This article reviews the progress of exosome applications in stroke treatment.It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation.At present,many studies on exosome-based therapies for stroke are actively underway.Regarding preclinical research,exosomes,as bioactive substances with diverse sources,currently favor stem cells as their origin.Due to their high plasticity,exosomes can be effectively modified through various physical,chemical,and genetic engineering methods to enhance their efficacy.In animal models of stroke,exosome therapy can reduce neuroinflammatory responses,alleviate oxidative stress damage,and inhibit programmed cell death.Additionally,exosomes can promote angiogenesis,repair and regenerate damaged white matter fiber bundles,and facilitate the migration and differentiation of neural stem cells,aiding the repair process.We also summarize new directions for the application of exosomes,specifically the exosome intervention through the ventricular-meningeal lymphatic system.The review findings suggest that the treatment paradigm for stroke is poised for transformation.
基金supported by the Spanish Ministerio de Ciencia e Innovación/Agencia Española de Investigación(PID2021-124096OB-I00)(to JLV)JGR was granted by Demensfonden,The Royal Physiografic Society of Lund,Neurofonden,The Greta och Johan Kocks stiftelser,and Bertil och Ebon Norlins stiftelse.
文摘Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.
基金supported by the National Natural Science Foundation of China,Nos.82171076(to XS)and U22A20311(to XS),82101168(to TL)Shanghai Science and technology Innovation Action Plan,No.23Y11901300(to JS)+1 种基金Science and Technology Commission of Shanghai Municipality,No.21ZR1451500(to TL)Shanghai Pujiang Program,No.22PJ1412200(to BY)。
文摘Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.
基金Supported by the Natural Science Foundation of Gansu Province,No.21JR7RA373 and No.24JRRA295.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in the tumor microenvir-onment.Inflammation regulates the expression of programmed death ligand-1(PD-L1)in the immunosuppressive tumor microenvironment and affects im-munotherapy efficacy.Interleukin-17A(IL-17A)is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors.We hypothesized that IL-17A participates in tumor progression by affe-cting the level of immune checkpoint molecules in HCC.The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR,western blotting,and flow cytometry.Mechanistic studies were conducted with gene knockout models and pathway inhibitors.The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells.The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro,and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo.RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner,whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A.IL-17A enhanced the survival of HCC cells in the coculture system.IL-17A increased the viability,G2/M ratio,and migration of HCC cells and decreased the apoptotic index.Cyclin D1,VEGF,MMP9,and Bcl-1 expression increased after IL-17A treatment,whereas BAX expression decreased.The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8+T lymphocyte infiltration in an HCC mouse model.CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapenta-plegic 2 signaling pathway in HCC cells.Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB0740000National Key Research and Development Program of China,No.2022YFB3904200,No.2022YFF0711601+1 种基金Key Project of Innovation LREIS,No.PI009National Natural Science Foundation of China,No.42471503。
文摘Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignancies worldwide,and Helicobacter pylori(HP)infection is a well-established risk factor for its development.Programmed death-ligand 1(PD-L1)expression is a crucial biomarker for predicting the efficacy of immune checkpoint inhibitors in cancer treatment.While HP infection and PD-L1 expression in GC may be linked,the relationship between them remains unclear,in part because there have been conflicting results reported from various studies.AIM To perform a meta-analysis to assess the relationship between HP and PD-L1 expression in patients with GC.METHODS A systematic literature review was conducted using PubMed,Embase,Cochrane Library,and Web of Science databases.Observational studies that examined the association between HP infection and PD-L1 expression in patients with GC were included.Odds ratios and 95%confidence intervals were calculated to estimate the association.Heterogeneity was assessed using Cochrane’s Q test and I²statistic.A random-effects model was used due to significant heterogeneity across studies.RESULTS Fourteen studies involving a total of 3069 patients with GC were included.The pooled analysis showed a significant association between HP infection and increased PD-L1 expression in GC tissues(odd ratio=1.69,95%confidence interval:1.24-2.29,P<0.001,I^(2)=59%).Sensitivity analyses confirmed the robustness of these findings.Subgroup analyses did not show significant variation based on geographic region,sample size,or method of PD-L1 assessment.Publication bias was minimal,as shown by funnel plots and Egger’s regression test.CONCLUSION HP infection is associated with increased PD-L1 expression in GC,suggesting that HP status may influence the response to programmed cell death protein 1/PD-L1 blockade therapy.
基金Supported by Russian Science Foundation,No.23-25-00183.
文摘BACKGROUND Breast cancer(BC)continues to occupy a leading position in terms of morbidity and mortality from malignant neoplasms among the female population.One of the promising markers associated with BC progression is programmed death ligand 1(PD-L1).Previously,we investigated PD-L1 expression in BC via a new antibody against programmed cell death protein 1 ligand 1(PDCD1 LG1)and reported that high PDCD1 LG1 expression in tumor cells is an independent factor for a high risk of regional metastasis in patients with BC.However,the prognostic significance of PDCD1 LG1 expression in BC stromal cells has not been adequately studied.AIM To study the features of PDCD1 LG1 expression in BC stromal cells and its relationship with BC clinicopathological characteristics.METHODS In a prospective single-center observational study,tumor samples from 148 patients with newly diagnosed BC were examined.The tumor sections were immunohistochemically stained with antibodies against PDCD1 LG1.In the tumor samples,the PDCD1 LG1-positive lymphocyte(PDCD1 LG1+LF)score,presence of nuclear PDCD1 LG1 expression in the LFs,PDCD1 LG1 expression in polymorphic cell infiltrates(PDCD1 LG1+polymorphic cell infiltrates[PCIs]),and cells of the fibroblastic stroma and endothelial cells of the tumor microvessels were assessed.Statistical analyses were performed using Statistica 10.0 software.RESULTS A PDCD1 LG1+LF score≥3 was detected more often at stages N0 and N3 than at N1 and N2(P=0.03).Moderate and pronounced PDCD1 LG1+PCIs and the presence of PDCD1 LG1+fibroblastic stroma were associated with negative estrogen receptor status(P=0.0008 and P=0.03,respectively),human epidermal growth factor receptor 2-positive(HER2+)BC(P<0.00001 and P=0.0005),and luminal B HER2+,non-luminal HER2+and triple-negative BC(P<0.00001 and P=0.004).The risk of metastasis to regional lymph nodes(RLNs)depend on lymphovascular invasion(LVI)and the PDCD1 LG1+LF score.In the absence of LVI and a PDCD1 LG1+LF score<3 or≥3,metastases in RLNs were absent in 66.6%and 93.9%of patients with BC,respectively.In the presence of LVI and a PDCD1 LG1+LF score<3 or≥3,metastases in RLNs were detected in 82.6%and 92.7%of patients with BC,respectively.CONCLUSION The results indicated that the combined assessment of the PDCD1 LG1+LF score and LVI can improve the accuracy of predicting the risk of metastasis to RLNs in patients with BC.
基金supported in part by the High-tech ship scientific research project of the Ministry of Industry and Information Technology of the People’s Republic of China,and the National Nature Science Foundation of China(Grant No.71671113)the Science and Technology Department of Shaanxi Province(No.2020GY-219)the Ministry of Education Collaborative Project of Production,Learning and Research(No.201901024016).
文摘Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.
基金supported by the National Natural Science Foundation of China (Nos. 81972799, 82202834, and 81871449)。
文摘Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金supported by Techpool Bio-Pharma Co.,Ltd.(grant no.AKR-S005).
文摘Objective:To investigate the anti-tumor effects of an E1B55KD-deleted oncolytic adenovirus,H101,in combination with a humanized anti-PD-1(Programmed cell death protein 1)monoclonal antibody,Camrelizumab.Methods:Anti-tumor efficacy of intratumoral injection of H101 or/and intraperitoneal injection of Camrelizumab were evaluated in an immune system humanized NOD Prkdc^(scid) Il2rg^(-/-)mice subcutaneous(S.C.)tumor model,established with human glioblastoma of unknown origin cell line U87-MG,and human bladder cancer cell line T24 and YTS-1.The mechanism by which H101 induced anti-tumor immunity were also investigated.Results:Combining H101 with Camrelizumab demonstrated more potent anti-tumor effects than monotherapy in mouse S.C.tumor model.Increased tumor-infiltrating T cells were observed in the combined treatment group.H101 infection decreased the expression of CD47 in cancer cells,thereby promoting macrophages to phagocytose cancer cells.Following the H101-mediated activation of macrophages,increased levels of cytokines,including TNF,IL-12 and IFN-γwere observed.Moreover,when induced THP-1 cells were co-cultured with H101-treated cancer cells,expression of IFN-γwas increased in T cells.Elimination of IL-12 using an anti-IL-12 antibody abolished IFN-γproduction from T cells.In addition,infection with H101 increased PD-L1 expression in YTS-1 cells.These results suggested that H101 may act synergistically to enhance the therapeutic efficacy of PD-1 blockade in cancer via suppressing CD47 signaling,which may promote macrophages to phagocytose tumor cells and activate CD8^(+)T cells.Conclusion:The combination of H101 with PD-1 blockade exhibits potential as a novel strategy for the treatment of cancer.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
基金Science and Technology Program of Guangzhou,No.202102010077International Science Foundation of Guangzhou Fuda Cancer Hospital,No.Y2020-ZD-03.
文摘BACKGROUND Irreversible electroporation(IRE)is a novel local tumor ablation approach with the potential to activate the host’s immune system.However,this approach is insufficient to prevent cancer progression,and complementary approaches are required for effective immunotherapy.AIM To assess the immunomodulatory effects and mechanism of IRE combined antiprogrammed cell death protein 1(PD-1)treatment in subcutaneous pancreatic cancer models.METHODS C57BL-6 tumor-bearing mice were randomly divided into four groups:Control group;IRE group;anti-PD-1 group;and IRE+anti-PD-1 group.Tumor-infiltrating T,B,and natural killer cell levels and plasma concentrations of T helper type 1 cytokines(interleukin-2,interferon-γ,and tumor necrosis factor-α)were evaluated.Real-time PCR was used to determine the expression of CD8(marker of CD8+T cells)in tumor tissues of the mice of all groups at different points of time.The growth curves of tumors were drawn.RESULTS The results demonstrated that the IRE+anti-PD-1 group exhibited significantly higher percentages of T lymphocyte infiltration,including CD4+and CD8+T cells compared with the control group.Additionally,the IRE+anti-PD-1 group showed increased infiltration of natural killer and B cells,elevated cytokine levels,and higher CD8 mRNA expression.Tumor volume was significantly reduced in the IRE+anti-PD-1 group,indicating a more pronounced therapeutic effect.CONCLUSION The combination of IRE and anti-PD-1 therapy promotes CD8+T cell immunity responses,leading to a more effective reduction in tumor volume and improved therapeutic outcomes,which provides a new direction for ablation and immunotherapy of pancreatic cancer.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is the most common form of liver cancer that has limited treatment options and a poor prognosis.Transarterial chemoembolization(TACE)is the first-line treatment for intermediate-stage HCC but can induce tumour hypoxia,thereby promoting angiogenesis.Recent studies suggested that combining TACE with anti-angiogenic therapies and immunotherapy might im-prove efficacy.Lenvatinib,a tyrosine kinase inhibitor,has demonstrated superior outcomes compared to sorafenib,while immune checkpoint inhibitors such as sintilimab show potential when combined with TACE.However,the efficacy and safety of TACE combined with lenvatinib and sintilimab(TACE+SL)compared to TACE with lenvatinib alone(TACE+L)in patients with intermediate-ad-vanced HCC has not yet been investigated.AIM To evaluate the efficacy and safety of TACE+SL therapy in comparison to TACE+L therapy in patients with intermediate-advanced HCC.METHODS A retrospective analysis was performed on patients with intermediate-advanced HCC who received TACE plus lenvatinib with or without sintilimab between September 2019 and September 2022.Baseline characteristics were compared,and propensity score matching was applied.Overall survival(OS),progression-free survival(PFS),and objective response rate(ORR)were evaluated between the two groups,and adverse events were analyzed.RESULTS The study included 57 patients,with 30 in the TACE+SL group and 27 in the TACE+L group.The TACE+SL group demonstrated significantly improved median PFS and OS compared to the TACE+L group(PFS:14.1 months vs 9.6 months,P=0.016;OS:22.4 months vs 14.1 months,P=0.039),along with a higher ORR(70.0%vs 55.6%).After propensity score matching,30 patients were included,with the TACE+SL group again showing longer median PFS and a trend toward improved OS(PFS:14.6 months vs 9.2 months,P=0.012;OS:23.9 months vs 16.3 months,P=0.063),and a higher ORR(73.3%vs 53.3%).No severe adverse events were reported.CONCLUSION TACE+SL demonstrated superior outcomes in terms of OS and PFS,compared to TACE+L.These findings suggest that the addition of sintilimab might enhance the therapeutic response in patients with intermediate-advanced HCC.