Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene ...Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.展开更多
Plant architecture and panicle architecture are two critical agronomic traits that greatly affect the yield of rice(Oryza sativa).PROSTRATE GROWTH 1(PROG1)encodes a key C2H2-type zinc-finger transcription factor and h...Plant architecture and panicle architecture are two critical agronomic traits that greatly affect the yield of rice(Oryza sativa).PROSTRATE GROWTH 1(PROG1)encodes a key C2H2-type zinc-finger transcription factor and has pleiotropic effects on the regulation of both plant and panicle architecture,thereby influencing the grain yield.However,the molecular mechanisms through which PROG1 controls plant and panicle architecture remain unclear.In this study,we showed that PROG1 directly binds the LAZY 1(LA1)promoter and acts as a repressor to inhibit LA1 expression.Conversely,LA1 acts as a repressor of PROG1 by directly binding to the PROG1 promoter.These two genes play antagonistic roles in shaping plant architecture by regulating both tiller angle and tiller number.Interestingly,our data showed that PROG1 controls panicle architecture through direct binding to the intragenic regulatory regions of OsGIGANTEA(OsGI)and subsequent activation of its expression.Collectively,we have identified two crucial targets of PROG1,LA1 and OsGI,shedding light on the molecular mechanisms underlying plant and panicle architecture control by PROG1.Our study provides valuable insights into the regulation of key domestication-related traits in rice and identifies potential targets for future high-yield rice breeding.展开更多
基金supported by the Top Talents Program"One Case One Discussion(Yishiyiyi)"of Shandong Province and the Natural Science Foundation of Shandong Province(ZR2022MC082).
文摘Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.
基金the National Natural Science Foundation of China(32060174 and 32160079)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297236 and 2020GXNSFAA297211)+2 种基金Fellowship of the China Postdoctoral Science Foundation(2021M693175)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(SKLCUSAa202007)the Innovation Project of Guangxi Graduate Education(YCBZ2023037).
文摘Plant architecture and panicle architecture are two critical agronomic traits that greatly affect the yield of rice(Oryza sativa).PROSTRATE GROWTH 1(PROG1)encodes a key C2H2-type zinc-finger transcription factor and has pleiotropic effects on the regulation of both plant and panicle architecture,thereby influencing the grain yield.However,the molecular mechanisms through which PROG1 controls plant and panicle architecture remain unclear.In this study,we showed that PROG1 directly binds the LAZY 1(LA1)promoter and acts as a repressor to inhibit LA1 expression.Conversely,LA1 acts as a repressor of PROG1 by directly binding to the PROG1 promoter.These two genes play antagonistic roles in shaping plant architecture by regulating both tiller angle and tiller number.Interestingly,our data showed that PROG1 controls panicle architecture through direct binding to the intragenic regulatory regions of OsGIGANTEA(OsGI)and subsequent activation of its expression.Collectively,we have identified two crucial targets of PROG1,LA1 and OsGI,shedding light on the molecular mechanisms underlying plant and panicle architecture control by PROG1.Our study provides valuable insights into the regulation of key domestication-related traits in rice and identifies potential targets for future high-yield rice breeding.