In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Pe...In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Peninsula in February 1985.Forty years later,in February 2024,China’s fifth research station,Qinling Station,commenced operations on Inexpress-ible Island near Terra Nova Bay.展开更多
Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of ...Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
In the published version of our article(Shaji et al.,2024),in the last paragraph of the article,Hong Kong should be corrected to Hong Kong(China)and the repetition of Spain and Ireland in the same sentence need to be ...In the published version of our article(Shaji et al.,2024),in the last paragraph of the article,Hong Kong should be corrected to Hong Kong(China)and the repetition of Spain and Ireland in the same sentence need to be deleted.The correct sentence is as below.展开更多
Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration a...Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration and complex petroleum accumulation processes.A comprehensive suite of geochemical analyses,including molecular components,carbon isotope composition,homogenization temperature of saline inclusions,and burial-thermal history of single wells,was conducted to elucidate the genesis of these ancient reservoirs.Three petroleum filling events have been identified in the study area:Late Caledonian,Hercynian-Indosinian,and Himalayan,through analysis of homogenization temperatures of brine inclusions and burial-thermal histories.Additionally,the oil in the study area has undergone significant alteration processes such as biodegradation,thermal alteration,mixing,evaporative fractionation,and gas invasion.This study particularly emphasizes the influential role of Himalayan gas filling-induced evaporation fractionation and gas invasion in shaping the present petroleum phase distribution.Furthermore,analysis of light hydrocarbon and diamondoid parameters indicates the oil within the study area is at a high maturity stage,with equivalent vitrinite reflectance values ranging from 1.48%to 1.99%.Additionally,the analysis of light hydrocarbons,aromatics,and thiadiamondoids indicates that TSR should occur in reservoirs near the gypsum-salt layers in the Cambrian.The existence of the Cambrian petroleum system in the study area is strongly confirmed when considering the analysis results of natural gas type(oil cracking gas),evaporative fractionation,and gas invasion.Permian local thermal anomalies notably emerge as a significant factor contributing to the destruction of biomarkers in oil.For oil not subject to transient,abnormal thermal events,biomarker reliability extends to at least 190℃.In conclusion,examining the special formation mechanisms and conditions of various secondary processes can offer valuable insights for reconstructing the history of petroleum accumulation in ultradeep reservoirs.This research provides a scientific foundation for advancing our knowledge of petroleum systems and underscores the importance of hydrocarbon geochemistry in unraveling ultra-deep,complex geological phenomena.展开更多
Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials...Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.展开更多
Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative cont...Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.展开更多
Background Pain sensitivity is critical for preventing non-suicidal self-injury(NSSI)behaviours;however,individuals engaging in such behaviours often exhibit decreased pain sensitivity,which may undermine this natural...Background Pain sensitivity is critical for preventing non-suicidal self-injury(NSSI)behaviours;however,individuals engaging in such behaviours often exhibit decreased pain sensitivity,which may undermine this natural safeguard.The dorsolateral prefrontal cortex(DLPFC)is a key region involved in pain regulation,and recent approaches using transcranial direct current stimulation(tDCS)to target the DLPFC have shown potential for modulating pain processing and restoring normal pain perception for individuals engaging in NSSI behaviours.Aims This study aimed to explore the immediate and short-term effects of a single session of tDCS on pain sensitivity in individuals with NSSI,as well as its secondary effects on mood and NSSI-related factors.Methods In this randomised,double-blind,parallel,sham-controlled clinical trial,participants with a history of NSSI were randomly assigned to receive either active or sham tDCS.The intervention consisted of a single 20 min tDCS session targeting the left DLPFC.The primary outcome was pain sensitivity,measured by the pressure pain threshold(PPT)and heat pain score(HPS).Secondary and additional outcomes included NSSI urges,NSSI resistance,self-efficacy in resisting NSSI,mood-related variables and exploratory cognitive-affective processes such as rumination,self-criticism and self-perceived pain sensitivity,assessed at baseline,immediately post-intervention,and at 24 hours,1 week and 2 weeks follow-ups.Results For the primary outcomes,no significant differences between groups were observed for pain sensitivity(PPT,padj=0.812;HPS,padj=0.608).However,an exploratory sensitivity analysis treating each trial as an individual observation revealed a significant effect on HPS(padj=0.036).For the secondary and additional outcomes,although there were initial improvements in joyful feelings and reductions in negative affect at 2 weeks post-intervention,these effects did not remain significant after multiple comparison corrections.Notably,reductions in rumination were statistically significant at both 1-week and 2-week follow-ups(1 week,p_(adj)=0.040;2 weeks,p_(adj)=0.042).There were no significant effects on NSSI urges,NSSI resistance,self-efficacy in resisting NSSI or self-criticism.Conclusions A single session of tDCS over the left DLPFC did not produce significant changes in pain sensitivity in individuals with NSSI.A sensitivity analysis indicated an effect on heat pain sensitivity,possibly reflecting changes in brain activity,warranting confirmation through neuroimaging.These findings suggest that tDCS warrants further investigation for its potential to influence pain-related cognitive-affective processes in individuals with NSSI.展开更多
Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in...Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.展开更多
The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,...The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.展开更多
Unstable electrode/electrolyte interfaces and heterogeneous Zn deposition would reduce the Coulombic efficiency and cycle life of Zn metal batteries(ZMBs). Applying water-in-salt(WIS) electrolytes has proven to be an ...Unstable electrode/electrolyte interfaces and heterogeneous Zn deposition would reduce the Coulombic efficiency and cycle life of Zn metal batteries(ZMBs). Applying water-in-salt(WIS) electrolytes has proven to be an effective strategy to address the above issues. However, an understanding of the reaction mechanisms on the Zn anode at nanoscale is still elusive. Here we utilize in situ atomic force microscopy to visualize the solid electrolyte interphase(SEI) formation and Zn deposition/dissolution processes in WIS electrolyte and construct relationships between interfacial behavior and electrochemical performance. The formation processes, chemical properties, and structure of the on-site formed SEI are deeply explored.The SEI with a “plum-pudding” model can guide uniform Zn deposition and reversible dissolution. Mechanistic understanding of the interfacial evolution of the SEI layer and Zn deposition/dissolution has been achieved and will benefit the structural optimization and interfacial engineering of ZMBs.展开更多
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
The Yarlung Zangbo Suture Zone(YZSZ)on the southern margin of the Lhasa block and the Tangjia-Sumdo ultrahigh-pressure metamorphic belt(TSMB)within the block represent natural laboratories for the study of plate tecto...The Yarlung Zangbo Suture Zone(YZSZ)on the southern margin of the Lhasa block and the Tangjia-Sumdo ultrahigh-pressure metamorphic belt(TSMB)within the block represent natural laboratories for the study of plate tectonics and oceanic slab subduction.It is generally believed that these two zones represent the remnants of the ancient oceanic crust and upper mantle of the Yarlung Zangbo Neo-Tethys(YZNT)and the Tangjia-Sumdo Paleo-Tethys(TSPT).However,the evolutionary patterns and spatiotemporal relationships of the TSPT and the YZNT have been debated.展开更多
In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversa...In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.展开更多
The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different te...The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different texture components.The findings reveal that the texture evolution is governed by two mechanisms:an overall orientation transformation induced by plastic strain and a localized transformation occurring at the shearing bands within grains.During the rolling process,the extrusion texture components of Ex{123}<111>and Cu{112}<111>evolve into S{123}<634>,and the Bs{011}<211>rotates into the orientations near R-Bs and S.With increasing deformation,the S,Bs,and R-Bs orientations further rotate around the TD axis and disperse into new orientations,forming recrystallized grains.The shearing bands with different initial orientations exhibit similar orientation evolution patterns,all of which evolve from the initial orientation to a series of recrystallization orientations.展开更多
The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of ...The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.展开更多
In oil and gas well cementing processes,accurately predicting the bottom hole circulating temperature(BHCT)is critical to ensuring effective zonal isolation.Overestimating the temperature can lead to excessive retarda...In oil and gas well cementing processes,accurately predicting the bottom hole circulating temperature(BHCT)is critical to ensuring effective zonal isolation.Overestimating the temperature can lead to excessive retardation issues,while underestimation can cause cementing accidents.Current methods for calculating the BHCT of cement slurry typically simplify the cementing processes to a single-fluid circulation and ignore the impact of pre-cementing processes on temperature,leading to significant discrepancies between calculated and actual results.In this study,the wellbore and formation are simplified into a two-dimensional axisymmetric structure,and a mathematical model of the temperature field under multi-fluid and multi-step conditions is established based on the law of energy conservation.The finite volume method was used to discretize the model,and a transient temperature field solver for the entire cementing process was developed,which can numerically calculate the temperature of any fluid at any time,any location.For an actual well example,the temperature distribution of the wellbore and formation after casing running is taken as the initial condition.Numerical calculations were performed sequentially to calculate the temperature fields of circulation flushing,wellbore preparation,and cementing,as well as the BHCT of the cement slurry.The study reveals that during the circulation flushing stage,the maximum temperature point in the wellbore is located at a distance of about 366 m above the bottom of the well.In the wellbore preparation stage,due to static heat exchange,the maximum temperature point gradually shifts to the bottom of the well.The BHCT of cement slurry changes continuously under cementing processes with multi-fluid and multi-step,making it a transient value.The BHCT of the lead slurry and tail slurry are not equal,with the maximum BHCT of the tail slurry being 2.46°C higher than that of the lead slurry.If circulation flushing and wellbore preparation are not considered,the calculated BHCT of the cement slurry will have errors of+6.8%and-1.9%.The study highlighted that considering thermal effects of all cementing stages,such as circulation flushing and wellbore preparation,in BHCT calculations can help improve prediction accuracy.展开更多
To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migong...To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.展开更多
Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+...Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.展开更多
文摘In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Peninsula in February 1985.Forty years later,in February 2024,China’s fifth research station,Qinling Station,commenced operations on Inexpress-ible Island near Terra Nova Bay.
基金supported by the National Natural Science Foundation of China(No.42007428)the National Forage Industry Technology System Program of China(No.CARS34)+1 种基金the Key Research and Development Program of Shaanxi,China(No.2022SF-285)Shaanxi Province Forestry Science and Technology Innovation Program,China(No.SXLK2022-02-14)。
文摘Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
文摘In the published version of our article(Shaji et al.,2024),in the last paragraph of the article,Hong Kong should be corrected to Hong Kong(China)and the repetition of Spain and Ireland in the same sentence need to be deleted.The correct sentence is as below.
基金funded by the National Natural Science Foundations of China(Grant No.42173054)。
文摘Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration and complex petroleum accumulation processes.A comprehensive suite of geochemical analyses,including molecular components,carbon isotope composition,homogenization temperature of saline inclusions,and burial-thermal history of single wells,was conducted to elucidate the genesis of these ancient reservoirs.Three petroleum filling events have been identified in the study area:Late Caledonian,Hercynian-Indosinian,and Himalayan,through analysis of homogenization temperatures of brine inclusions and burial-thermal histories.Additionally,the oil in the study area has undergone significant alteration processes such as biodegradation,thermal alteration,mixing,evaporative fractionation,and gas invasion.This study particularly emphasizes the influential role of Himalayan gas filling-induced evaporation fractionation and gas invasion in shaping the present petroleum phase distribution.Furthermore,analysis of light hydrocarbon and diamondoid parameters indicates the oil within the study area is at a high maturity stage,with equivalent vitrinite reflectance values ranging from 1.48%to 1.99%.Additionally,the analysis of light hydrocarbons,aromatics,and thiadiamondoids indicates that TSR should occur in reservoirs near the gypsum-salt layers in the Cambrian.The existence of the Cambrian petroleum system in the study area is strongly confirmed when considering the analysis results of natural gas type(oil cracking gas),evaporative fractionation,and gas invasion.Permian local thermal anomalies notably emerge as a significant factor contributing to the destruction of biomarkers in oil.For oil not subject to transient,abnormal thermal events,biomarker reliability extends to at least 190℃.In conclusion,examining the special formation mechanisms and conditions of various secondary processes can offer valuable insights for reconstructing the history of petroleum accumulation in ultradeep reservoirs.This research provides a scientific foundation for advancing our knowledge of petroleum systems and underscores the importance of hydrocarbon geochemistry in unraveling ultra-deep,complex geological phenomena.
基金supported by the Research Platform Open Fund Project of Zhejiang Industry and Trade Vocation College(No.Kf202203)the Scientific Research Project of CCCC First Harbor Engineering Company Ltd.(No.2022-7-2)+3 种基金the National Natural Science Foundation of China(No.22406142)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230262)the Fellowship of China Postdoctoral Science Foundation(No.2023M732636)the Shanghai Post-doctoral Excellence Program(No.2023755).
文摘Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.
基金financially supported by the National Science Foundation of China(No.41920104010)the China Postdoctoral Science Foundation(No.2024M762767)+3 种基金the Fundamental Research Funds for the Central University,CHD(No.300102264104)by the Postdoctoral Fellowship Program of CPSF(No.GZC20241444)supported by Fondazione Cariplo and Fondazione CDP(No.2022-1546_001)by the Italian Ministry of Education,MUR(Project Dipartimenti di Eccellenza,TECLA,Department of Earth and Environmental Sciences,University of Milano-Bicocca)。
文摘Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.
基金supported by National Natural Science Foundation of China(82471564)YT is supported by National Natural Science Foundation of China(32322035,32171078).
文摘Background Pain sensitivity is critical for preventing non-suicidal self-injury(NSSI)behaviours;however,individuals engaging in such behaviours often exhibit decreased pain sensitivity,which may undermine this natural safeguard.The dorsolateral prefrontal cortex(DLPFC)is a key region involved in pain regulation,and recent approaches using transcranial direct current stimulation(tDCS)to target the DLPFC have shown potential for modulating pain processing and restoring normal pain perception for individuals engaging in NSSI behaviours.Aims This study aimed to explore the immediate and short-term effects of a single session of tDCS on pain sensitivity in individuals with NSSI,as well as its secondary effects on mood and NSSI-related factors.Methods In this randomised,double-blind,parallel,sham-controlled clinical trial,participants with a history of NSSI were randomly assigned to receive either active or sham tDCS.The intervention consisted of a single 20 min tDCS session targeting the left DLPFC.The primary outcome was pain sensitivity,measured by the pressure pain threshold(PPT)and heat pain score(HPS).Secondary and additional outcomes included NSSI urges,NSSI resistance,self-efficacy in resisting NSSI,mood-related variables and exploratory cognitive-affective processes such as rumination,self-criticism and self-perceived pain sensitivity,assessed at baseline,immediately post-intervention,and at 24 hours,1 week and 2 weeks follow-ups.Results For the primary outcomes,no significant differences between groups were observed for pain sensitivity(PPT,padj=0.812;HPS,padj=0.608).However,an exploratory sensitivity analysis treating each trial as an individual observation revealed a significant effect on HPS(padj=0.036).For the secondary and additional outcomes,although there were initial improvements in joyful feelings and reductions in negative affect at 2 weeks post-intervention,these effects did not remain significant after multiple comparison corrections.Notably,reductions in rumination were statistically significant at both 1-week and 2-week follow-ups(1 week,p_(adj)=0.040;2 weeks,p_(adj)=0.042).There were no significant effects on NSSI urges,NSSI resistance,self-efficacy in resisting NSSI or self-criticism.Conclusions A single session of tDCS over the left DLPFC did not produce significant changes in pain sensitivity in individuals with NSSI.A sensitivity analysis indicated an effect on heat pain sensitivity,possibly reflecting changes in brain activity,warranting confirmation through neuroimaging.These findings suggest that tDCS warrants further investigation for its potential to influence pain-related cognitive-affective processes in individuals with NSSI.
基金supported by the National Natural Science Foundation of China for General Program(42171118)the National Natural Science Foundation of China for Distinguished Young Scholars(41925030)the Special Funding Projects of Talents of Yunnan Province(YNWR-QNBJ-2020-099).
文摘Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.
基金the financial support from National Natural Science Foundation of China(Nos.52100204 and 52330005)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910004016)。
文摘The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.
基金financially supported by the National Key R&D Program of China (No. 2021YFB2500300)the CAS Project for Young Scientists in Basic Research (No. YSBR-058)+1 种基金the National Science Foundation of China (No. 22205241)the National Postdoctoral Program for Innovative Talents (No. BX20220306) of the Chinese Postdoctoral Science Foundation。
文摘Unstable electrode/electrolyte interfaces and heterogeneous Zn deposition would reduce the Coulombic efficiency and cycle life of Zn metal batteries(ZMBs). Applying water-in-salt(WIS) electrolytes has proven to be an effective strategy to address the above issues. However, an understanding of the reaction mechanisms on the Zn anode at nanoscale is still elusive. Here we utilize in situ atomic force microscopy to visualize the solid electrolyte interphase(SEI) formation and Zn deposition/dissolution processes in WIS electrolyte and construct relationships between interfacial behavior and electrochemical performance. The formation processes, chemical properties, and structure of the on-site formed SEI are deeply explored.The SEI with a “plum-pudding” model can guide uniform Zn deposition and reversible dissolution. Mechanistic understanding of the interfacial evolution of the SEI layer and Zn deposition/dissolution has been achieved and will benefit the structural optimization and interfacial engineering of ZMBs.
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202404310,KJQN202304302)National Natural Science Foundation of China(41972118).
文摘The Yarlung Zangbo Suture Zone(YZSZ)on the southern margin of the Lhasa block and the Tangjia-Sumdo ultrahigh-pressure metamorphic belt(TSMB)within the block represent natural laboratories for the study of plate tectonics and oceanic slab subduction.It is generally believed that these two zones represent the remnants of the ancient oceanic crust and upper mantle of the Yarlung Zangbo Neo-Tethys(YZNT)and the Tangjia-Sumdo Paleo-Tethys(TSPT).However,the evolutionary patterns and spatiotemporal relationships of the TSPT and the YZNT have been debated.
文摘In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.
基金supported by the National Natural Science Foundation of China(No.52205393)the Natural Science Foundation of Shandong Province,China(No.ZR2022QE263)+1 种基金the Science and Technology Commission of Shanghai Municipality,Shanghai Rising-Star Program,China(No.23YF1413900)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission,China(Nos.21010500800,23010501100).
文摘The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different texture components.The findings reveal that the texture evolution is governed by two mechanisms:an overall orientation transformation induced by plastic strain and a localized transformation occurring at the shearing bands within grains.During the rolling process,the extrusion texture components of Ex{123}<111>and Cu{112}<111>evolve into S{123}<634>,and the Bs{011}<211>rotates into the orientations near R-Bs and S.With increasing deformation,the S,Bs,and R-Bs orientations further rotate around the TD axis and disperse into new orientations,forming recrystallized grains.The shearing bands with different initial orientations exhibit similar orientation evolution patterns,all of which evolve from the initial orientation to a series of recrystallization orientations.
基金supported by the National Key Program for Developing Basic Science(Nos.2022YFF0801702 and 2022YFE0106600)the National Natural Science Foundation of China(Nos.42175060 and 42175021)the Jiangsu Province Science Foundation(No.BK20250200302).
文摘The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.
基金supported by the National Natural Science Foundation of China(No.U22B6003 and No.52274010)the China Scholarship Council(No.202008080235)。
文摘In oil and gas well cementing processes,accurately predicting the bottom hole circulating temperature(BHCT)is critical to ensuring effective zonal isolation.Overestimating the temperature can lead to excessive retardation issues,while underestimation can cause cementing accidents.Current methods for calculating the BHCT of cement slurry typically simplify the cementing processes to a single-fluid circulation and ignore the impact of pre-cementing processes on temperature,leading to significant discrepancies between calculated and actual results.In this study,the wellbore and formation are simplified into a two-dimensional axisymmetric structure,and a mathematical model of the temperature field under multi-fluid and multi-step conditions is established based on the law of energy conservation.The finite volume method was used to discretize the model,and a transient temperature field solver for the entire cementing process was developed,which can numerically calculate the temperature of any fluid at any time,any location.For an actual well example,the temperature distribution of the wellbore and formation after casing running is taken as the initial condition.Numerical calculations were performed sequentially to calculate the temperature fields of circulation flushing,wellbore preparation,and cementing,as well as the BHCT of the cement slurry.The study reveals that during the circulation flushing stage,the maximum temperature point in the wellbore is located at a distance of about 366 m above the bottom of the well.In the wellbore preparation stage,due to static heat exchange,the maximum temperature point gradually shifts to the bottom of the well.The BHCT of cement slurry changes continuously under cementing processes with multi-fluid and multi-step,making it a transient value.The BHCT of the lead slurry and tail slurry are not equal,with the maximum BHCT of the tail slurry being 2.46°C higher than that of the lead slurry.If circulation flushing and wellbore preparation are not considered,the calculated BHCT of the cement slurry will have errors of+6.8%and-1.9%.The study highlighted that considering thermal effects of all cementing stages,such as circulation flushing and wellbore preparation,in BHCT calculations can help improve prediction accuracy.
基金supported by the National Natural Science Foundation of China(Nos.42007178 and 41907327)the Natural Science Foundation of Hubei(Nos.2020CFB463 and 2019CFB372)+4 种基金China Geological Survey(Nos.DD20160304 and DD20190824)Fundamental Research Funds for the Central Universities(Nos.CUG 190644 and CUGL180817)National Key Research and Development Program(No.2019YFC1805502)Key Laboratory of Karst Dynamics,MNR and GZAR(Institute of Karst Geology,CAGS)Guilin(No.KDL201703)Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification,MNR and IRCK by UNESCO(No.KDL201903)。
文摘To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.
基金Supported by the Academic Achievement Re-cultivation Projects of Jingdezhen Ceramic University(Grant Nos.215/20506341215/20506277)the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)。
文摘Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.