The consumption of ultra-processed foods(UPFs)is continuously increasing,and there is growing evidence that these foods contribute to the development and progression of cancer.For oncology patients alone,maintaining n...The consumption of ultra-processed foods(UPFs)is continuously increasing,and there is growing evidence that these foods contribute to the development and progression of cancer.For oncology patients alone,maintaining nutritional status is crucial for tolerating treatments and improving survival.The aim of this paper is to review the role of UPFs in the diet of oncology patients,highlighting their potential health-damaging effects(e.g.,increased inflammation,microbiome disruption,nutrient deficiencies)and potential benefits(e.g.,easy accessibility,high energy content,specially formulated nutritional supplements)particularly in the context of addressing the energy and nutrient needs and nutritional challenges of patients experiencing cancer-related cachexia or anorexia.Using a literature review,we examine how the UPFs can impact oncology patients’health,supporting the quality of life and clinical outcomes of oncology patients.展开更多
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ...Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.展开更多
1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his w...1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.展开更多
Bone repair remains an important target in tissue engineering,making the development of bioactive scaffolds for effective bone defect repair a critical objective.In this study,β-tricalcium phosphate(β-TCP)scaffolds ...Bone repair remains an important target in tissue engineering,making the development of bioactive scaffolds for effective bone defect repair a critical objective.In this study,β-tricalcium phosphate(β-TCP)scaffolds incorporated with processed pyritum decoction(PPD)were fabricated using three-dimensional(3D)printing-assisted freeze-casting.The produced composite scaffolds were evaluated for their mechanical strength,physicochemical properties,biocompatibility,in vitro proangiogenic activity,and in vivo efficacy in repairing rabbit femoral defects.They not only demonstrated excellent physicochemical properties,enhanced mechanical strength,and good biosafety but also significantly promoted the proliferation,migration,and aggregation of pro-angiogenic human umbilical vein endothelial cells(HUVECs).In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site,with theβ-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1(Notch1),vascular endothelial growth factor(VEGF),bone morphogenetic protein-2(BMP-2),and osteopontin(OPN).Overall,the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo.The incorporation of PPD notably promoted the angiogenic-osteogenic coupling,thereby accelerating bone repair,which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.展开更多
Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6...Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6),p-hydroxybenzoic acid(7),p-hydroxyphenylacetic acid(8),uvaol(9),stigmasta-7,22,25-triene-3-ol(10),lupeol(11),11-oxo-α-amyrin palmitate(12),catechol(13),maltol(14),adenosine(15).Compounds 5-15 were isolated from genus Strychnos for the first time.展开更多
Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micr...Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micro-electromechanical systems,micro-sensors,and field-effect transistors.However,SiC,being a brittle and hard material,poses challenges for traditional machining methods like micro-groove machining and chemical etching,including subsurface damage,short tool life,and low processing efficiency.This paper investigates the processing characteristics of femtosecond laser machining of SiC micro-grooves and compares them with those of single-crystal Si.The results indicate that femtosecond laser ablation of SiC primarily leads to melting and vaporization,forming modification,melted,and ablation areas in the affected area.Femtosecond laser processing of SiC micro-grooves involves three processes:heat absorption and melting,vaporization,and chipping,with vaporization as the primary material removal mechanism.The depth and width of SiC micro-grooves are positively correlated with pulse energy(E_p),pulse overlap rate(PO),and number of passes(N_(pass)).The bottom roughness of the micro-grooves is positively correlated with E_p,negatively correlated with PO,and less affected by changes in the N_(pass).These findings further elucidate the material removal and micro-groove formation mechanisms of SiC under femtosecond laser irradiation,providing theoretical insights for high-quality and high-efficiency processing of SiC micro-grooves.展开更多
For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,...For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.展开更多
In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematical...In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematically investigated.The results show that friction stir processing effectively refined the coarse Mg_(5)Gd phases into nanoscale second phases uniformly distributed along grain boundaries.The synergistic effect of texture weakening and second phases refinement significantly enhanced the tensile strength and elongation of the FSP-1000-120 alloy to 302.1 MPa and 18.3%,respectively,representing increases of 20.8%and 281.3%compared to the as-cast alloy.The as-cast alloy has a lower corrosion rate in the initial stage due to fewer micro-galvanic corrosion sites.However,the uniform distribution of the second phase in the FSP-treated(FSPed)alloy contributes to the formation of a more complete and dense corrosion product film.After 120 h of immersion,the as-cast alloy forms deep pits due to the continuous dissolution at the second phase-matrix interface,with the average corrosion rate increasing from 0.31 to 0.47 mL/cm^(2)/h.The long-term corrosion rates of FSP-1000-60,FSP-1000-120,and FSP-1200-120 samples are stable at 0.36,0.43,and 0.50 mL/cm^(2)/h,respectively.Research reveals that FSP regulates texture and second phase distribution to achieve synergistic strengthening of alloy strength plasticity,and the homogenization of second phase distribution is a key factor in improving the long-term corrosion resistance of alloys.展开更多
Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic...Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.展开更多
Friction stir processing(FSP)induces severe plastic deformation,generating intense strains and localized heating,which modifies the surface and enables the fabrication of magnesium(Mg)-based composites.This technique ...Friction stir processing(FSP)induces severe plastic deformation,generating intense strains and localized heating,which modifies the surface and enables the fabrication of magnesium(Mg)-based composites.This technique refines the microstructure of Mg alloys,enhancing mechanical properties—particularly ductility,a key limitation of these HCP alloys.This review addresses the underlying microstructural evolution during FSP of Mg alloys and Mg-matrix composites,including(i)grain refinement via continuous and discontinuous dynamic recrystallization(CDRX and DDRX),(ii)fragmentation and redistribution of secondary phases and intermetallics,(iii)transformation of low-and high-angle grain boundaries,and(iv)additional microstructural changes induced by external reinforcements.This review provides a comprehensive analysis of the strengthening mechanisms and their impact on the mechanical properties of FSP Mg alloys and Mgmatrix composites(MMCs).The paper examines the correlation between FSP processing parameters,microstructural evolution,and resulting mechanical properties.It critically highlights how the type of reinforcement and the dynamic recrystallization induced by friction stir processing influence grain boundary character and,consequently,the material’s strengthening response.It includes a comparative evaluation of yield stress,ultimate tensile strength,microhardness,elongation,and fractography for various FSP-treated Mg alloys and MMCs,including AZxx,WExx,ZExx,ZKxx,AMxx,AExx,and Mg-rare earth alloys.Additionally,the novelty of this review lies in its emphasis on connecting microstructural transformations to mechanical performance trends across different alloy systems and processing strategies,an aspect that has been underexplored in previous reviews.Recent advancements in FSP techniques and their implications for improving the performance of Mg-based materials are also discussed.展开更多
Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce th...Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce the toxicity of raw Fuzi by modifying its toxic and effective components,primarily diterpenoid alkaloids.To comprehensively analyze the chemical variations between different Fuzi products,ultra-high performance liquid chromatography-linear ion trap quadrupole Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS)was employed to systematically characterize Shengfuzi,Heishunpian and Baifupian.A total of 249 diterpenoid alkaloids present in Shengfuzi were identified,while only 111 and 61 in Heishunpian and Baifupian were detected respectively,indicating substantial differences among these products.An untargeted metabolomics approach combined with multivariate statistical analysis revealed 42 potential chemical markers.Through subsequent validation using 52 batches of commercial Heishunpian and Baifupian samples,8 robust markers distinguishing these products were identified,including AC1-propanoic acid-3OH,HE-glucoside,HE-hydroxyvaleric acid-2OH,dihydrosphingosine,N-dodecoxycarbonylvaline and three unknown compounds.Additionally,the MS imaging(MSI)technique was utilized to visualize the spatial distribution of chemical constituents in raw Fuzi,revealing how different processing procedures affect the chemical variations between Heishunpian and Baifupian.The distribution patterns of different diterpenoid alkaloid subtypes partially explained the chemical differences among products.This research provides valuable insights into the material basis for future investigations of different Fuzi products.展开更多
Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and ident...Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psb A-trn H, rbc L, mat K, trnL(UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL(UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%——20% of the processed samples, while the amplification rates of the trnL(UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL(UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control.展开更多
The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were a...The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were analyzed by GC-MS.Wet distillation (WD) and supercritical fluid extraction (SFE) were used to extract essential oil components from the samples.Total 48,57 and 48 compounds were found in the extracted essential oils using WD from RIE,the products obtained by stir-baking with honey from Ephedra (SBHE) and the products obtained by stir-baking without any supplements from Ephedra (SBE),respectively whereas total 22,36 and 28 compounds were identified in the extracted essential oils using SPE from these three samples,respectively.In addition,14 and 9 new compounds were found in the essential oils extracted using WD from SBHE and SBE,whereas 15 and 23 new compounds were found in the essential oils extracted by SFE from SBHE and SBE,respectively.The composition and concentration of the essential oil components in the processed products were significantly different from RIE.Such changes in essential oil components might affect drug actions,which is dependent on the manner in which the sample is processed.The findings in this study may shed some lights on the understanding and further exploration of Ephedra processing.展开更多
To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to E...To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to English publications,and the references of the retrieved articles.We combined the studyspecific relative risks(RRs) and 95%CI,comparing the highest with the lowest categories of consumption by using a random-effects model.A total of 4 cohort studies and 23 case-control studies were included in the meta-analysis.The combined RRs(95%CI) of the cohort studies comparing the highest and lowest categories were 1.26(1.00-1.59) for red meat and 1.25(0.83-1.86) for processed meat.For the case-control studies,the combined RRs(95%CI) comparing the highest and lowest categories were 1.44(1.16-1.80)for red meat and 1.36(1.07-1.74) for processed meat.Findings from this meta-analysis suggest that a higher consumption of red meat was associated with a greater risk of esophageal cancer.展开更多
Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is ...Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is lacking. The degradation of imidaclopnd in processed CTC tea and tea liquor was investigated in the present study in which imidacloprid was applied at recommended application rate (30.0 g a.i./ha) and twice the recommended application rate (60.0 g a.i./ha) for three consecutive seasons. Imidacloprid was rapidly dissipated in processed tea following first order reaction kinetics at all application rates and had half-lives of 0.9 1-1.16 d with the residue in tea liquor found to be below detectable limit on 3rd day samples. The study revealed that imidacloprid is safe for human consumption and will not pose any residual toxicity problem.展开更多
By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proport...By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.展开更多
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti...Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.展开更多
The components of crude and processed Fructus Corni were investigated by means of electrospray ionization-tandem mass spectrometry(ESI-MSn) technique in the negative ion mode. Compared with those of crude Fructus Co...The components of crude and processed Fructus Corni were investigated by means of electrospray ionization-tandem mass spectrometry(ESI-MSn) technique in the negative ion mode. Compared with those of crude Fructus Corni, the chemical components of the processed Fructus Corni were changed both in quality and in quantity. From the ESI-MS spectra of the crude and processed Fructus Corni, six peaks were selected to establish the characte-ristic ESI-MS peaks. Several factors in the processing procedure were examined. The experimental results demonstrate that the chemical reactions that occurred in the processing procedure can be used for the elucidation of the processed mechanism of Fructus Corni, which is regularly affected by the processing conditions. The present article provides both the chemistry evidence for the understanding of the processing procedure of Fructus Corni and the specific methodology for the research of the processing procedure and quality identification of traditional Chinese medicine.展开更多
The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbi...The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.展开更多
[Objectives]This study aimed to observe the effects of different processed products of Radix Codonopsis on intestinal flora in rats with spleen deficiency.[Methods]Rat models with spleen deficiency were established by...[Objectives]This study aimed to observe the effects of different processed products of Radix Codonopsis on intestinal flora in rats with spleen deficiency.[Methods]Rat models with spleen deficiency were established by bitter-cold purgation method with Radix et Rhizoma Rhei.Normal group,model group,Radix Codonopsis group,fried Radix Codonopsis group,rice-fried Radix Codonopsis group,honey-fried Radix Codonopsis group and bran-fired Radix Codonopsis group were designed.After subjecting to corresponding treatments,the changes in the quantity of intestinal microorganisms of the rats were detected.[Results]There was no significant change in the quantity of intestinal microorganisms of the rats in the normal group and model group.The rats in the rice-fried Radix Codonopsis group were administered after successful modeling,and the abundance of Bifidobacterium and Lactobacillus in the intestines of the rats increased,and the quantity of Escherichia coli and Staphylococci reduced.The rats in the Radix Codonopsis group,fried Radix Codonopsis groups,honey-fried Radix Codonopsis group and bran-fried Radix Codonopsis group were administered after successful modeling,and the abundance of Bifidobacterium and Lactobacillus in the intestines of the rats increased(the increases were smaller than those in the rice-fried Radix Codonopsis group),and the abundance of E.coli and Staphylococci reduced,close to normal levels.[Conclusions]Different processed products of Radix Codonopsis have obvious regulation effect on intestinal flora of rats with spleen deficiency,and the regulation effect of rice-fried Radix Codonopsis on rats with spleen deficiency is better than that of Radix Codonopsis,fried Radix Codonopsis,honey-fried Radix Codonopsis and bran-fried Radix Codonopsis.展开更多
文摘The consumption of ultra-processed foods(UPFs)is continuously increasing,and there is growing evidence that these foods contribute to the development and progression of cancer.For oncology patients alone,maintaining nutritional status is crucial for tolerating treatments and improving survival.The aim of this paper is to review the role of UPFs in the diet of oncology patients,highlighting their potential health-damaging effects(e.g.,increased inflammation,microbiome disruption,nutrient deficiencies)and potential benefits(e.g.,easy accessibility,high energy content,specially formulated nutritional supplements)particularly in the context of addressing the energy and nutrient needs and nutritional challenges of patients experiencing cancer-related cachexia or anorexia.Using a literature review,we examine how the UPFs can impact oncology patients’health,supporting the quality of life and clinical outcomes of oncology patients.
基金supported by the National Natural Science Foundation of China(32060577 and 32360619)Natural Science Foundation of Jiangxi Province(20224ACB203016 and 20212BAB203034)the Open Project of China Food Flavor and Nutrition Health Innovation Center(CFC2023B-013).
文摘Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.
文摘1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.
基金supported by the National Science Foundation of China(Nos.81373970,81773902,81973484,and 32171402)the National College Students Innovation and Entrepreneurship Training Program(No.201810315019)+4 种基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.SJCX21_0712 and KYCX23_2052)the Scientific Research Project of Jiangsu Provincial Association of Traditional Chinese Medicine(No.XYLD2024013)the Youth Scientific Research Project of Jiangyin Municipal Health Commission(No.Q202402)the Natural Science Foundation Project of Nanjing University of Chinese Medicine(No.XZR2024173)the Jiangyin Science and Technology Innovation Special Fund Project(No.JY0603A011014230032PB),China.
文摘Bone repair remains an important target in tissue engineering,making the development of bioactive scaffolds for effective bone defect repair a critical objective.In this study,β-tricalcium phosphate(β-TCP)scaffolds incorporated with processed pyritum decoction(PPD)were fabricated using three-dimensional(3D)printing-assisted freeze-casting.The produced composite scaffolds were evaluated for their mechanical strength,physicochemical properties,biocompatibility,in vitro proangiogenic activity,and in vivo efficacy in repairing rabbit femoral defects.They not only demonstrated excellent physicochemical properties,enhanced mechanical strength,and good biosafety but also significantly promoted the proliferation,migration,and aggregation of pro-angiogenic human umbilical vein endothelial cells(HUVECs).In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site,with theβ-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1(Notch1),vascular endothelial growth factor(VEGF),bone morphogenetic protein-2(BMP-2),and osteopontin(OPN).Overall,the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo.The incorporation of PPD notably promoted the angiogenic-osteogenic coupling,thereby accelerating bone repair,which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.
基金Research Platform for Quality Standard of TCM and Information System Building(Grant No.2009ZX09308-04)National S&T Major Project-Created Major New Drugs Projects(Grant No.2009ZX09311-004)
文摘Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6),p-hydroxybenzoic acid(7),p-hydroxyphenylacetic acid(8),uvaol(9),stigmasta-7,22,25-triene-3-ol(10),lupeol(11),11-oxo-α-amyrin palmitate(12),catechol(13),maltol(14),adenosine(15).Compounds 5-15 were isolated from genus Strychnos for the first time.
基金Supported by National Natural Science Foundation of China(Grant No.52122510)the School-enterprise Cooperation Project Funded by Dongguan Strong Laser Advanced Equipment Co.,Ltd.(Grant No.21HK0214)。
文摘Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micro-electromechanical systems,micro-sensors,and field-effect transistors.However,SiC,being a brittle and hard material,poses challenges for traditional machining methods like micro-groove machining and chemical etching,including subsurface damage,short tool life,and low processing efficiency.This paper investigates the processing characteristics of femtosecond laser machining of SiC micro-grooves and compares them with those of single-crystal Si.The results indicate that femtosecond laser ablation of SiC primarily leads to melting and vaporization,forming modification,melted,and ablation areas in the affected area.Femtosecond laser processing of SiC micro-grooves involves three processes:heat absorption and melting,vaporization,and chipping,with vaporization as the primary material removal mechanism.The depth and width of SiC micro-grooves are positively correlated with pulse energy(E_p),pulse overlap rate(PO),and number of passes(N_(pass)).The bottom roughness of the micro-grooves is positively correlated with E_p,negatively correlated with PO,and less affected by changes in the N_(pass).These findings further elucidate the material removal and micro-groove formation mechanisms of SiC under femtosecond laser irradiation,providing theoretical insights for high-quality and high-efficiency processing of SiC micro-grooves.
基金supported by the funding from the Shi Changxu Innovation Center for Advanced Materials(No.SCXKFJJ202210)the National Natural Science Foundation of China(No.52271043)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021193)the Liaoning Province Excellent Youth Foundation(No.2024JH3/10200021)the Liaoning Revitalization Talents Program(No.XLYC2403094).
文摘For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.
基金supported by the National Natural Science Foundation of China(Nos.52201119,52371108,52203295)the Joint Fund of Henan Science and Technology R&D Plan of China(242103810056)Frontier Exploration Project of Longmen Laboratory,China(LMQYTSKT014).
文摘In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematically investigated.The results show that friction stir processing effectively refined the coarse Mg_(5)Gd phases into nanoscale second phases uniformly distributed along grain boundaries.The synergistic effect of texture weakening and second phases refinement significantly enhanced the tensile strength and elongation of the FSP-1000-120 alloy to 302.1 MPa and 18.3%,respectively,representing increases of 20.8%and 281.3%compared to the as-cast alloy.The as-cast alloy has a lower corrosion rate in the initial stage due to fewer micro-galvanic corrosion sites.However,the uniform distribution of the second phase in the FSP-treated(FSPed)alloy contributes to the formation of a more complete and dense corrosion product film.After 120 h of immersion,the as-cast alloy forms deep pits due to the continuous dissolution at the second phase-matrix interface,with the average corrosion rate increasing from 0.31 to 0.47 mL/cm^(2)/h.The long-term corrosion rates of FSP-1000-60,FSP-1000-120,and FSP-1200-120 samples are stable at 0.36,0.43,and 0.50 mL/cm^(2)/h,respectively.Research reveals that FSP regulates texture and second phase distribution to achieve synergistic strengthening of alloy strength plasticity,and the homogenization of second phase distribution is a key factor in improving the long-term corrosion resistance of alloys.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515010875)National Natural Science Foundation of China (12404480)+4 种基金Shenzhen Science and Technology Program (JCYJ20240813113238050, JCYJ20240813113306008)Education Department of Guangdong Province (2021KCXTD045)National Natural Science Foundation of China (12274303)the Shenzhen Key Laboratory of Applied Technologies of Super-Diamond and Functional Crystals (ZDSYS20230626091303007)Characteristic Innovation Foundation of Higher Education Institutions of Guangdong Province (2022KTSCX116)
文摘Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.
基金the National Science Foundation under grant number CMMI-2339857.
文摘Friction stir processing(FSP)induces severe plastic deformation,generating intense strains and localized heating,which modifies the surface and enables the fabrication of magnesium(Mg)-based composites.This technique refines the microstructure of Mg alloys,enhancing mechanical properties—particularly ductility,a key limitation of these HCP alloys.This review addresses the underlying microstructural evolution during FSP of Mg alloys and Mg-matrix composites,including(i)grain refinement via continuous and discontinuous dynamic recrystallization(CDRX and DDRX),(ii)fragmentation and redistribution of secondary phases and intermetallics,(iii)transformation of low-and high-angle grain boundaries,and(iv)additional microstructural changes induced by external reinforcements.This review provides a comprehensive analysis of the strengthening mechanisms and their impact on the mechanical properties of FSP Mg alloys and Mgmatrix composites(MMCs).The paper examines the correlation between FSP processing parameters,microstructural evolution,and resulting mechanical properties.It critically highlights how the type of reinforcement and the dynamic recrystallization induced by friction stir processing influence grain boundary character and,consequently,the material’s strengthening response.It includes a comparative evaluation of yield stress,ultimate tensile strength,microhardness,elongation,and fractography for various FSP-treated Mg alloys and MMCs,including AZxx,WExx,ZExx,ZKxx,AMxx,AExx,and Mg-rare earth alloys.Additionally,the novelty of this review lies in its emphasis on connecting microstructural transformations to mechanical performance trends across different alloy systems and processing strategies,an aspect that has been underexplored in previous reviews.Recent advancements in FSP techniques and their implications for improving the performance of Mg-based materials are also discussed.
基金supported by the Qi-Huang Chief Scientist Program of the National Administration of Traditional Chinese Medicine(2020)the National Key Research and Development Program of China(No.2022YFC3501705)+1 种基金Shanghai Sailing Program(No.23YF1447500)the China Postdoctoral Science Foundation(No.2023M732335).
文摘Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce the toxicity of raw Fuzi by modifying its toxic and effective components,primarily diterpenoid alkaloids.To comprehensively analyze the chemical variations between different Fuzi products,ultra-high performance liquid chromatography-linear ion trap quadrupole Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS)was employed to systematically characterize Shengfuzi,Heishunpian and Baifupian.A total of 249 diterpenoid alkaloids present in Shengfuzi were identified,while only 111 and 61 in Heishunpian and Baifupian were detected respectively,indicating substantial differences among these products.An untargeted metabolomics approach combined with multivariate statistical analysis revealed 42 potential chemical markers.Through subsequent validation using 52 batches of commercial Heishunpian and Baifupian samples,8 robust markers distinguishing these products were identified,including AC1-propanoic acid-3OH,HE-glucoside,HE-hydroxyvaleric acid-2OH,dihydrosphingosine,N-dodecoxycarbonylvaline and three unknown compounds.Additionally,the MS imaging(MSI)technique was utilized to visualize the spatial distribution of chemical constituents in raw Fuzi,revealing how different processing procedures affect the chemical variations between Heishunpian and Baifupian.The distribution patterns of different diterpenoid alkaloid subtypes partially explained the chemical differences among products.This research provides valuable insights into the material basis for future investigations of different Fuzi products.
基金supported by the Major Scientific and Technological Special Project for“Significant New Drugs Creation(No.2014ZX09304307)the Key Projects in he National Science and Technology Pillar Program(No.2011BAI07B08)
文摘Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psb A-trn H, rbc L, mat K, trnL(UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL(UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%——20% of the processed samples, while the amplification rates of the trnL(UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL(UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control.
基金State Projects of the Eleventh-Five-year Plan (Grant No.2006BAI09B06-08-05)
文摘The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were analyzed by GC-MS.Wet distillation (WD) and supercritical fluid extraction (SFE) were used to extract essential oil components from the samples.Total 48,57 and 48 compounds were found in the extracted essential oils using WD from RIE,the products obtained by stir-baking with honey from Ephedra (SBHE) and the products obtained by stir-baking without any supplements from Ephedra (SBE),respectively whereas total 22,36 and 28 compounds were identified in the extracted essential oils using SPE from these three samples,respectively.In addition,14 and 9 new compounds were found in the essential oils extracted using WD from SBHE and SBE,whereas 15 and 23 new compounds were found in the essential oils extracted by SFE from SBHE and SBE,respectively.The composition and concentration of the essential oil components in the processed products were significantly different from RIE.Such changes in essential oil components might affect drug actions,which is dependent on the manner in which the sample is processed.The findings in this study may shed some lights on the understanding and further exploration of Ephedra processing.
文摘To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to English publications,and the references of the retrieved articles.We combined the studyspecific relative risks(RRs) and 95%CI,comparing the highest with the lowest categories of consumption by using a random-effects model.A total of 4 cohort studies and 23 case-control studies were included in the meta-analysis.The combined RRs(95%CI) of the cohort studies comparing the highest and lowest categories were 1.26(1.00-1.59) for red meat and 1.25(0.83-1.86) for processed meat.For the case-control studies,the combined RRs(95%CI) comparing the highest and lowest categories were 1.44(1.16-1.80)for red meat and 1.36(1.07-1.74) for processed meat.Findings from this meta-analysis suggest that a higher consumption of red meat was associated with a greater risk of esophageal cancer.
基金Project supported by Bayer Crop. Science India Ltd
文摘Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is lacking. The degradation of imidaclopnd in processed CTC tea and tea liquor was investigated in the present study in which imidacloprid was applied at recommended application rate (30.0 g a.i./ha) and twice the recommended application rate (60.0 g a.i./ha) for three consecutive seasons. Imidacloprid was rapidly dissipated in processed tea following first order reaction kinetics at all application rates and had half-lives of 0.9 1-1.16 d with the residue in tea liquor found to be below detectable limit on 3rd day samples. The study revealed that imidacloprid is safe for human consumption and will not pose any residual toxicity problem.
文摘By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.
基金The authors acknowledge funding from the National Natural Science Foundation of China(61974150 and 51773213)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC047)+1 种基金the Fundamental Research Funds for the Central Universities,the CAS-EU S&T cooperation partner program(174433KYSB20150013)the Natural Science Foundation of Ningbo(2018A610135).
文摘Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.
基金the National Natural Science Foundation of China(No.30672600)the Great Research Project of Chinese Academy of Sciences(No.KGCX2-SW-213-06)+1 种基金the Natural Science Foundation of Jilin Province(No.20060902)the Natural Science Foundation of Changchun City, China(No.04-02GG233)
文摘The components of crude and processed Fructus Corni were investigated by means of electrospray ionization-tandem mass spectrometry(ESI-MSn) technique in the negative ion mode. Compared with those of crude Fructus Corni, the chemical components of the processed Fructus Corni were changed both in quality and in quantity. From the ESI-MS spectra of the crude and processed Fructus Corni, six peaks were selected to establish the characte-ristic ESI-MS peaks. Several factors in the processing procedure were examined. The experimental results demonstrate that the chemical reactions that occurred in the processing procedure can be used for the elucidation of the processed mechanism of Fructus Corni, which is regularly affected by the processing conditions. The present article provides both the chemistry evidence for the understanding of the processing procedure of Fructus Corni and the specific methodology for the research of the processing procedure and quality identification of traditional Chinese medicine.
文摘The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.
基金Supported by National Natural Science Foundation of China(No.81360524)Youth Foundation of Guangxi University of Chinese Medicine(No.2019QN036)+2 种基金Basic Ability Improvement Project for Scientific Research of Young and Middle-aged Teachers in Colleges and Universities of Guangxi(No.2019KY0341)Key Research and Development Project of Science and Technology Department of Guangxi(No.AB19110003)Third-class Chinese(Zhuang)Medicine Chemistry and Quality Analysis Laboratory of National Administration of Traditional Chinese Medicine(Guo Zhong Yi Yao Fa 2009[21]).
文摘[Objectives]This study aimed to observe the effects of different processed products of Radix Codonopsis on intestinal flora in rats with spleen deficiency.[Methods]Rat models with spleen deficiency were established by bitter-cold purgation method with Radix et Rhizoma Rhei.Normal group,model group,Radix Codonopsis group,fried Radix Codonopsis group,rice-fried Radix Codonopsis group,honey-fried Radix Codonopsis group and bran-fired Radix Codonopsis group were designed.After subjecting to corresponding treatments,the changes in the quantity of intestinal microorganisms of the rats were detected.[Results]There was no significant change in the quantity of intestinal microorganisms of the rats in the normal group and model group.The rats in the rice-fried Radix Codonopsis group were administered after successful modeling,and the abundance of Bifidobacterium and Lactobacillus in the intestines of the rats increased,and the quantity of Escherichia coli and Staphylococci reduced.The rats in the Radix Codonopsis group,fried Radix Codonopsis groups,honey-fried Radix Codonopsis group and bran-fried Radix Codonopsis group were administered after successful modeling,and the abundance of Bifidobacterium and Lactobacillus in the intestines of the rats increased(the increases were smaller than those in the rice-fried Radix Codonopsis group),and the abundance of E.coli and Staphylococci reduced,close to normal levels.[Conclusions]Different processed products of Radix Codonopsis have obvious regulation effect on intestinal flora of rats with spleen deficiency,and the regulation effect of rice-fried Radix Codonopsis on rats with spleen deficiency is better than that of Radix Codonopsis,fried Radix Codonopsis,honey-fried Radix Codonopsis and bran-fried Radix Codonopsis.