期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
The role of primate-specifc genes in the phenotypicevolution of lorises
1
作者 Chunyan Chen Yong Shao +2 位作者 Sheng Wang Mingli Li Haifa Qiao 《Current Zoology》 2025年第2期267-272,共6页
Pygmy lorises are arboreal primates primarily found in forest environments across Southeast Asia(Nekaris 2014).Theyhave a diverse diet,including plant secretions,nectar,fruits,invertebrates,tree bark,and bird eggs.All... Pygmy lorises are arboreal primates primarily found in forest environments across Southeast Asia(Nekaris 2014).Theyhave a diverse diet,including plant secretions,nectar,fruits,invertebrates,tree bark,and bird eggs.All 9 known speciesof pygmy lorises are listed as globally endangered species(Nekaris 2014).Pygmy lorises exhibit a range of unique phenotypic characteristics rarely seen among primates. 展开更多
关键词 primate specific genes pygmy lorises southeast asia arboreal primates plant secretions nectar fruits invertebrates tree phenotypic characteristics phenotypic evolution
原文传递
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
2
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING BIOMATERIALS cell therapy humans non-human primates spinal cord injury stem cell therapy
暂未订购
Histopathological Insights into Demyelination and Remyelination After Spinal Cord Injury in Non-human Primates
3
作者 Junhao Liu Zucheng Huang +6 位作者 Kinon Chen Rong Li Zhiping Huang Junyu Lin Hui Jiang Jie Liu Qingan Zhu 《Neuroscience Bulletin》 2025年第8期1429-1447,共19页
Demyelination and remyelination play key roles in spinal cord injury(SCI),affecting the recovery of motor and sensory functions.Research in rodent models is extensive,but the study of these processes in non-human prim... Demyelination and remyelination play key roles in spinal cord injury(SCI),affecting the recovery of motor and sensory functions.Research in rodent models is extensive,but the study of these processes in non-human primates is limited.Therefore,our goal was to thoroughly study the histological features of demyelination and remyelination after contusion injury of the cervical spinal cord in Macaca fascicularis.In a previous study,we created an SCI model in M.fascicularis by controlling the contusion displacement.We used Eriochrome Cyanine staining,immunohistochemical analysis,and toluidine blue staining to evaluate demyelination and remyelination.The results showed demyelination ipsilateral to the injury epicenter both rostrally and caudally,the former mainly impacting sensory pathways,while the latter primarily affected motor pathways.Toluidine blue staining showed myelin loss and axonal distension at the injury site.Schwann cell-derived myelin sheaths were only found at the center,while thinner myelin sheaths from oligodendrocytes were seen at the center and surrounding areas.Our study showed that long-lasting demyelination occurs in the spinal cord of M.fascicularis after SCI,with oligodendrocytes and Schwann cells playing a significant role in myelin sheath formation at the injury site. 展开更多
关键词 DEMYELINATION REMYELINATION Spinal cord injury Histological analysis Non-human primate
原文传递
Integrating natural disasters into protected area designing for global primate conservation under climate change
4
作者 Li Yang Weiying Xu +2 位作者 Tao Chen Yuxuan Fan Pengfei Fan 《Geography and Sustainability》 2025年第3期64-72,共9页
Disaster risk reduction,an essential function of protected areas(PAs),has been generally overlooked in PA design.Using primates as a model,we designed a disaster risk index(DRI)to measure the disaster sensitivity of p... Disaster risk reduction,an essential function of protected areas(PAs),has been generally overlooked in PA design.Using primates as a model,we designed a disaster risk index(DRI)to measure the disaster sensitivity of primate species.High-conservation-need(HCN)areas were identified by both their richness and number of threatened primate species.We also constructed high-disaster-risk(HDR)areas and climate-sensitive(CS)areas based on a disaster risk assessment and temperature change under climate change.We overlaid HCN and HDR areas to obtain HDR-HCN areas.We defined species conservation targets as the percent of each species’range that should be effectively conserved using“Zonation”.Landslides had the highest DRI(1.43±0.88),but have been overlooked in previous studies.PA coverage in HDR-HCN(30%)areas was similar to that in HCN areas(28%),indicating that current PA design fails to account for disaster risk reduction.About 50%of the HDR-HCN areas overlapped with CS areas.Presently,43%of primate species meet their conservation targets.Fifty-seven of primate species would meet their conservation targets and 67%of primates could benefit from PA expansion if HDR-HCN areas are fully incorporated into PAs.Increasing PA coverage in HDR-HCN areas is essential to achieving both primate conservation and disaster risk reduction.The study calls for integrating disaster risk reduction into PA design guidelines,particularly in regions like the western Amazon,and recommends flexible conservation approaches in other areas. 展开更多
关键词 Natural disasters LANDSLIDES Conservation target primate conservation
在线阅读 下载PDF
Utilizing thermal imaging drones to investigate sleeping site selection in an arboreal primate
5
作者 Eva Gazagne Chiara Goldblatt +2 位作者 VỹTrần Nguyễn Fany Brotcorne Alain Hambuckers 《Current Zoology》 2025年第5期560-572,共13页
Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.Ho... Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species. 展开更多
关键词 noninvasive monitoring primate conservation Pygathrix nigripes sleeping site selection thermal infrared imaging drones
原文传递
DNA methylation confers a cerebellum-specific identity in non-human primates
6
作者 Xiao-Dong Liu Chang-Cheng Ye +9 位作者 Yang Wang Xiao-Song Zhang Hui-Xian Wei Lei-Jie Xie Jia-Xiang Xie Yan-Ru Xu Li-Ying Zhong Shi-Hua Li Xiao-Jiang Li Li Lin 《Zoological Research》 2025年第2期414-428,共15页
Selective regulation of gene expression across distinct brain regions is crucial for establishing and maintaining subdivision identities.DNA methylation,a key regulator of gene transcription,modulates transcriptional ... Selective regulation of gene expression across distinct brain regions is crucial for establishing and maintaining subdivision identities.DNA methylation,a key regulator of gene transcription,modulates transcriptional activity through the conversion of 5-methylcytosine(5mC)to 5-hydroxymethylcytosine(5hmC).While DNA methylation is hypothesized to play an essential role in shaping brain identity by influencing gene expression patterns,its direct contribution,especially in primates,remains largely unexplored.This study examined DNA methylation landscapes and transcriptional profiles across four brain regions,including the cortex,cerebellum,striatum,and hippocampus,using samples from 12 rhesus monkeys.The cerebellum exhibited distinct epigenetic and transcriptional signatures,with differentially methylated regions(DMRs)significantly enriched in metabolic pathways.Notably,genes harboring clustered differentially hydroxymethylated regions(DhMRs)overlapped with those implicated in schizophrenia.Moreover,5mC located1 kb upstream of the ATG start codon was correlated with gene expression and exhibited region-specific associations with 5hmC.These findings provide insights into the coordinated regulation of cerebellum-specific 5mC and5hmC,highlighting their potential roles in defining cerebellar identity and contributing to neuropsychiatric diseases. 展开更多
关键词 5-Methylcytosine Gene expression 5-Hydroxymethylcytosine Non-human primates CEREBELLUM Tissue identity
在线阅读 下载PDF
A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates
7
作者 Zhi‑Qiang Xiao Xiu Han +9 位作者 Xin Ren Zeng‑Qiang Wang Si‑Qi Chen Qiao‑Feng Zhu Hai‑Yang Cheng Yin‑Tian Li Dan Liang Xuan‑Wei Liang Ying Xu Hui Yang 《Neuroscience Bulletin》 2025年第5期911-916,共6页
Dear Editor,Traumatic optic neuropathy(TON)is a severe vision-threatening condition,with an incidence rate ranging from 0.7% to 2.5%[1].The limited regenerative capacity of the optic nerve and the challenges of nerve ... Dear Editor,Traumatic optic neuropathy(TON)is a severe vision-threatening condition,with an incidence rate ranging from 0.7% to 2.5%[1].The limited regenerative capacity of the optic nerve and the challenges of nerve transplantation result in substantial and irreversible visual loss in patients with TON. 展开更多
关键词 traumatic optic neuropathy non human primates vision threatening condition anterior orbital approach optic nerve transplantation optic neuropathy ton nerve transplantation optic nerve
原文传递
Genetically modified non-human primate models for research on neurodegenerative diseases 被引量:3
8
作者 Ming-Tian Pan Han Zhang +1 位作者 Xiao-Jiang Li Xiang-Yu Guo 《Zoological Research》 SCIE CSCD 2024年第2期263-274,共12页
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(... Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis. 展开更多
关键词 NEURODEGENERATION Non-human primate Macaque monkey Animal model Gene modification
暂未订购
Comparative analysis of primate and pig cells reveals primate-specific PINK1 expression and phosphorylation 被引量:1
9
作者 Xiu-Sheng Chen Rui Han +8 位作者 Yan-Ting Liu Wei Huang Qi Wang Xin Xiong Ying Zhang Jian-Guo Zhao Shi-Hua Li Xiao-Jiang Li Wei-Li Yang 《Zoological Research》 SCIE CSCD 2024年第2期242-252,共11页
PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l... PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency. 展开更多
关键词 PINK1 PARKIN MITOCHONDRIA PHOSPHORYLATION Non-human primates PIGS
在线阅读 下载PDF
Achievements and challenges of primate conservation in China 被引量:3
10
作者 Bao-Guo Li He Zhang +21 位作者 Ming Li Xue-Long Jiang Peng-Fei Fan Jiang Zhou Song-Tao Guo Xiao-Guang Qi Jin-Hua Li Ji-Qi Lu Dong-Po Xia Liang-Wei Cui Zuo-Fu Xiang Qi-Hai Zhou Zhi-Pang Huang Cheng-Ming Huang Wen Xiao Hui-Jian Hu Zhi-Xin Zhou Ming-Yong Chen Da-Yong Li Peng-Lai Fan Yin Yang Ru-Liang Pan 《Zoological Research(Diversity and Conservation)》 2024年第1期66-74,共9页
The dual impact of climate change and human activities has precipitated a sharp decline in primate biodiversity globally.China is home to the most diverse primate species in the Northern hemisphere,which face severe e... The dual impact of climate change and human activities has precipitated a sharp decline in primate biodiversity globally.China is home to the most diverse primate species in the Northern hemisphere,which face severe ecological threats due to the expansion of modern agriculture,extensive exploitation and consumption of natural resources,and excessive land development during its transition from an agricultural to a modern society.In response,China has implemented various ecological conservation measures,including habitat restoration and protection.These efforts have made substantial strides in biodiversity conservation,with certain regions witnessing an increase in primate populations.In the current study,we conducted a systematic review of historical documents and field research data related to Chinese primates,evaluating the endangered status of primate species in China.Despite improvements in the habitats of most primate species and some population growth,many species still face severe threats,including declining and small populations.Species such as the Myanmar snub-nosed monkey(Rhinopithecus strykeri),eastern black crested gibbon(Nomascus nasutus),and Hainan gibbon(N.hainanus)remain particularly vulnerable due to their limited distribution ranges and extremely small populations.Insufficient scientific data,fragmented information,and not enough studies in conservation biology further compound the challenges.Moreover,there is a notable lack of detailed population monitoring data for species such as the Bengal slow loris(Nycticebus bengalensis),pygmy slow loris(N.pygmaeus),Indochinese gray langur(Trachypithecus crepusculus),Shortridge’s langur(T.shortridgei),and capped langur(T.pileatus),which hinders the development of practical and targeted conservation management strategies.Therefore,for national biodiversity conservation,there is an urgent need for specialized primate surveys,enhancing habitat protection and restoration,and increasing focus on cross-border conservation strategies and regional cooperation.There is also a need to establish a comprehensive and systematic research database platform,conduct continuous and in-depth research in primate biology,and actively engage in the scientific assessment of ecotourism.Additionally,strengthening public awareness and education on wildlife conservation remains essential.Such integrated and systematic efforts will provide scientific support for the current and future conservation and management of primate species in China. 展开更多
关键词 primateS BIODIVERSITY Habitat fragmentation Habitat restoration Conservation strategies
在线阅读 下载PDF
Multimodal Nature of the Single-cell Primate Brain Atlas:Morphology,Transcriptome,Electrophysiology,and Connectivity
11
作者 Yuhui Shen Mingting Shao +3 位作者 Zhao-Zhe Hao Mengyao Huang Nana Xu Sheng Liu 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第4期517-532,共16页
Primates exhibit complex brain structures that augment cognitive function.The neocortex fulfills high-cognitive functions through billions of connected neurons.These neurons have distinct transcriptomic,morphological,... Primates exhibit complex brain structures that augment cognitive function.The neocortex fulfills high-cognitive functions through billions of connected neurons.These neurons have distinct transcriptomic,morphological,and electrophysiological properties,and their connectivity principles vary.These features endow the primate brain atlas with a multimodal nature.The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex,enabling a multimodal neuronal atlas to be established in great detail:(1)single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references,covering all major transcriptomic cell types;(2)patch-seq links the morphological and electrophysiological features to the transcriptomic reference;(3)multicell patch-clamp delineates the principles of local connectivity.Here,we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex. 展开更多
关键词 NEURON Brain atlas Patch-seq CONNECTIVITY primate
原文传递
Optical-neural Stimulation in Non-human Primates:Modulating Brain Function and Behavior
12
作者 CHEN Yi-Bing WANG Huan YANG Yan 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2379-2391,共13页
Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulatio... Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential. 展开更多
关键词 optical-neural stimulation OPTOGENETICS infrared neurostimulation non-human primates
原文传递
Advances in spinal cord injury:insights from non-human primates
13
作者 Gaetan Poulen Florence E.Perrin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2354-2364,共11页
Spinal cord injury results in significant sensorimotor deficits,currently,there is no curative treatment for the symptoms induced by spinal cord injury.Basic and pre-clinical research on spinal cord injury relies on t... Spinal cord injury results in significant sensorimotor deficits,currently,there is no curative treatment for the symptoms induced by spinal cord injury.Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models.These models should replicate the symptoms observed in human,allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury.Non-human primates,due to their close phylogenetic association with humans,share more neuroanatomical,genetic,and physiological similarities with humans than rodents.Therefore,the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans.In this review,we will discuss nonhuman primate models of spinal cord injury,focusing on in vivo assessments,including behavioral tests,magnetic resonance imaging,and electrical activity recordings,as well as ex vivo histological analyses.Additionally,we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury. 展开更多
关键词 BEHAVIOR cellular analysis non-human primates spinal cord injury tissue analysis
暂未订购
Progress of non-human primate animal models of cancers 被引量:8
14
作者 夏厚军 陈策实 《Zoological Research》 CAS CSCD 北大核心 2011年第1期70-80,共11页
Cancer is the second leading disease causing human death.Pre-clinical in vivo studies are essential for translating in vitro laboratory research results into the clinic.Rodents,including the mouse and rat,have been wi... Cancer is the second leading disease causing human death.Pre-clinical in vivo studies are essential for translating in vitro laboratory research results into the clinic.Rodents,including the mouse and rat,have been widely used for pre-clinical studies due to their small size,clear genetic backgrounds,rapid propagation,and mature transgenic technologies.However,because rodents are evolutionarily distinct from humans,many pre-clinical research results using rodent models cannot be reproduced in the clinic.Non-human primates(NHPs) may be better animal models than rodents for human cancer research because NHPs and humans share greater similarity in regards to their genetic evolution,immune system,physiology and metabolism.This article reviews the latest progress of cancer research in NHPs by focusing on the carcinogenesis of different NHPs induced by chemical and biological carcinogens.Finally,future research directions for the use of NHPs in cancer research are discussed. 展开更多
关键词 Non-human primate CANCER Tree shrew
在线阅读 下载PDF
Experimental primates and non-human primate(NHP) models of human diseases in China: current status and progress 被引量:20
15
作者 Xiao-Liang ZHANG Wei PANG +3 位作者 Xin-Tian HU Jia-Li LI Yong-Gang YAO Yong-Tang ZHENG 《Zoological Research》 CAS CSCD 北大核心 2014年第6期447-464,共18页
Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biom... Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective to better utilize NHP resources and further foster NHP research in China. 展开更多
关键词 Non-human primates Experimental primates Animal models Current status
暂未订购
The 3rd Symposium on Animal Models of Primates——The Application of Non-Human Primates to Basic Research and Translational Medicine 被引量:4
16
作者 Yong-Gang Yao Yong-Bin Chen Bin Liang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第6期339-341,共3页
In order to understand the fundamental questions of the biology of life and to duplicate the pathogenesis of human diseases, animal models using different experimental animals, such as rodents, Drosophila, Caenorhabdi... In order to understand the fundamental questions of the biology of life and to duplicate the pathogenesis of human diseases, animal models using different experimental animals, such as rodents, Drosophila, Caenorhabditis elegans, and zebrafish, have been established and used widely for many decades. The controllability of environmental conditions, the high reproducibility, the ease of scale and the comparability of results, as well as the ability to use different standards for ethical protocols, all make an animal model the ideal tool for carrying out studies on human diseases and the development of novel pharmaceuticals and new therapies (Xue et al., 2014). An ideal animal model should reflect the complete spectra of a specific human disease, with similar features on the following key issues: (1) genetic basis; (2) anatomy and physiology; (3) pathological response(s) and underlying mechanism(s); (4) phenotypic endpoints as clinical studies; (5) responsiveness to known drugs with clinical efficacy; and (6) prediction of clinical efficacy (McGonigle and Ruggeri, 2014). 展开更多
关键词 The 3rd Symposium on Animal Models of primates The Application of Non-Human primates to Basic Research and Translational Medicine
原文传递
A novel mind-set in primate experimentation:Implications for primate welfare 被引量:1
17
作者 Antonella Tramacere Atsushi Iriki 《Animal Models and Experimental Medicine》 CSCD 2021年第4期343-350,共8页
We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the ad... We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the advantages of investigating both genes and neural mechanisms and processes in the emergence of behavioral and cognitive functions,and propose the establishment of an open field of primate research.The latter may be conducted by implementing and harmonizing experimental practices with ethical guidelines that regulate(1)management of natural parks with free-moving populations of target nonhuman primates,(2)establishment of indoor-outdoor labs for both system genetics and neuroscience investigations,and(3)hotel space and technologies which remotely collect and dislocate information regarding primates geographically located elsewhere. 展开更多
关键词 animal models cognitive neuroscience natural parks NEUROPSYCHIATRY primate experimentation primate welfare Research Domain Criteria
在线阅读 下载PDF
Cortical Representation of Pain and Touch:Evidence from Combined Functional Neuroimaging and Electrophysiology in Non-human Primates 被引量:7
18
作者 Li Min Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第1期165-177,共13页
Human functional MRI studies in acute and various chronic pain conditions have revolutionized how we view pain, and have led to a new theory that complex multi-dimensional pain experience (sensory-discriminative, aff... Human functional MRI studies in acute and various chronic pain conditions have revolutionized how we view pain, and have led to a new theory that complex multi-dimensional pain experience (sensory-discriminative, affective/motivational, and cognitive) is represented by concurrent activity in widely-distributed brain regions (termed a network or pain matrix). Despite these break- through discoveries, the specific functions proposed for these regions remain elusive, because detailed electrophys- iological characterizations of these regions in the primate brain are lacking. To fill in this knowledge gap, we have studied the cortical areas around the central and lateral sulci of the non-human primate brain with combined submillimeter resolution functional imaging (optical imaging and fMRI) and intracranial electrophysiological recording. In this mini-review, I summarize and present data showing that the cortical circuitry engaged in nociceptive processing is much more complex than previously recognized. Electrophysiological evidence supports the engage- ment of a distinct nociceptive-processing network within SI (i.e., areas 3a, 3b, 1 and 2), SII, and other areas along the lateral sulcus. Deafferentation caused by spinal cord injury profoundly alters the relationships between fMRI and electrophysiological signals. This finding has significant implications for using fMRI to study chronic pain conditions involving deafferentation in humans. 展开更多
关键词 NOCICEPTION Non-human primate CORTEX Functional MRI Functional connectivity
原文传递
Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans 被引量:7
19
作者 Magdalini Tsintou Kyriakos Dalamagkas Nikos Makris 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期425-437,共13页
The central nervous system is known to have limited regenerative capacity.Not only does this halt the human body’s reparative processes after central nervous system lesions,but it also impedes the establishment of ef... The central nervous system is known to have limited regenerative capacity.Not only does this halt the human body’s reparative processes after central nervous system lesions,but it also impedes the establishment of effective and safe therapeutic options for such patients.Despite the high prevalence of stroke and spinal cord injury in the general population,these conditions remain incurable and place a heavy burden on patients’families and on society more broadly.Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments,utilizing stem cells-based strategies,biologically active molecules,nanotechnology,exosomes and highly tunable biodegradable systems(e.g.,certain hydrogels).Although there are studies demonstrating promising preclinical results,safe clinical translation has not yet been accomplished.A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment,and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury.Such an ideal model does not currently exist,but it seems that the nonhuman primate model is uniquely qualified for this role,given its close resemblance to humans.This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation.In addition,it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline. 展开更多
关键词 animal models central nervous system regeneration clinical translation exosomes hydrogels neural tissue engineering nonhuman primateS spinal CORD injury stem cells stroke
暂未订购
Protective Efficacy of Inactivated Vaccine against SARS-CoV-2 Infection in Mice and Non-Human Primates 被引量:6
20
作者 Yan-Feng Yao Ze-Jun Wang +27 位作者 Ren-Di Jiang Xue Hu Hua-Jun Zhang Yi-Wu Zhou Ge Gao Ying Chen Yun Peng Mei-Qin Liu Ya-Nan Zhang Juan Min Jia Lu Xiao-Xiao Gao Jing Guo Cheng Peng Xu-Rui Shen Qian Li Kai Zhao Lian Yang Xin Wan Bo Zhang Wen-Hui Wang Jia Wu Peng Zhou Xing-Lou Yang Shuo Shen Chao Shan Zhi-Ming Yuan Zheng-Li Shi 《Virologica Sinica》 SCIE CAS CSCD 2021年第5期879-889,共11页
The ongoing coronavirus disease 2019(COVID-19)pandemic caused more than 96 million infections and over 2 million deaths worldwide so far.However,there is no approved vaccine available for severe acute respiratory synd... The ongoing coronavirus disease 2019(COVID-19)pandemic caused more than 96 million infections and over 2 million deaths worldwide so far.However,there is no approved vaccine available for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the disease causative agent.Vaccine is the most effective approach to eradicate a pathogen.The tests of safety and efficacy in animals are pivotal for developing a vaccine and before the vaccine is applied to human populations.Here we evaluated the safety,immunogenicity,and efficacy of an inactivated vaccine based on the whole viral particles in human ACE2 transgenic mouse and in non-human primates.Our data showed that the inactivated vaccine successfully induced SARS-CoV-2-specific neutralizing antibodies in mice and non-human primates,and subsequently provided partial(in low dose)or full(in high dose)protection of challenge in the tested animals.In addition,passive serum transferred from vaccine-immunized mice could also provide full protection from SARS-CoV-2 infection in mice.These results warranted positive outcomes in future clinical trials in humans. 展开更多
关键词 Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) Coronavirus disease 2019(COVID-19) Inactivated vaccine Transgenic mouse Non-human primate
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部