Portal hypertension is a critical determinant of prognosis in chronic liver disease and a key factor in evaluating candidates for liver transplantation.Traditional methods such as hepatic venous pressure gradient(HVPG...Portal hypertension is a critical determinant of prognosis in chronic liver disease and a key factor in evaluating candidates for liver transplantation.Traditional methods such as hepatic venous pressure gradient(HVPG)measurement have long been considered the gold standard for assessing portal pressure.However,these methods are invasive and carry procedural limitations.Recent advances in endoscopic ultrasound(EUS)-guided techniques have emerged as promising alternatives,offering direct and minimally invasive assessment of portal pressure.EUS-guided portal pressure gradient measurement enables real-time evaluation of haemodynamic through direct access to the portal system.This technique has shown to be as accurate as HVPG,and it has some extra benefits,like the ability to take liver biopsies and check collateral circulation all at the same time.Despite these benefits,the technique poses challenges such as operator dependence,proce-dural complexity,and limited standardization across centres.This minireview highlights the evolution of portal pressure measurement,focusing on the potential of EUS-guided techniques in pre-transplant assessment,risk strati-fication,and monitoring therapeutic outcomes.Furthermore,it discusses the technical challenges,clinical implications,and future directions for integrating these innovations into routine practice.Advances in portal pressure measurement hold significant promise for enhancing decision-making and outcomes in liver transplantation.展开更多
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a...The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning ...In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning strategy using compressible layered 2H-MoTe2,achieving an effective decoupling between the electrical conductivity and Seebeck coefficient.The applied pressure simultaneously induces two complementary effects:(1)bandgap reduction that moderately enhances carrier concentration to improve the electrical conductivity,and(2)band convergence that dramatically increases density-of-states effective mass to boost the Seebeck coefficient.This dual mechanism yields an extraordinary 18.5-fold enhancement in the average power factor.First-principles calculations and Boltzmann transport modeling precisely reproduce the experimental observations,validating this pressure-induced decoupling mechanism.The pressure-tuning mechanism provides a feasible and effective strategy for breaking through the optimization limits of the power factor,facilitating the design of high-performance thermoelectric materials.展开更多
Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure in...Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure injuries (PI), result from the pression exerted by devices (or their fixation systems) applied for diagnostic and therapeutic purposes. MDRPI represent a serious problem for patients and healthcare systems. Understanding potential risk factors is an important step in implementing effective interventions. Methods: In this study, we will perform a systematic review;if possible, also a meta-analysis will be performed. The review will follow the preferred reporting items for systematic reviews and meta-analyses (PRISMA) reporting guidelines for systematic reviews. A rigorous literature search will be conducted both in electronic databases (Medline/PubMed, Embase, CINAHL, Web of Science, Scopus, Cochrane Library) to identify studies published since 2000 and in gray literature for unpublished studies. Pairs of researchers will identify relevant evidence, extract data, and assess risk of bias independently in each eligible study. Factors associated with the occurrence of MDRPI are considered the primary outcome. Secondary outcomes are prevalence and incidence of MDRPI, length of hospital stay, infections, and death. The evidence will be synthesized using the GRADE methodology. Results: Results are not currently available as this is a protocol for a systematic review. Conclusions: This systematic review will identify evidence on risk factors for developing MDRPI. We are confident that the results of this review will help to improve clinical practice and guide future research.展开更多
The recently discovered titanium-based kagome metal ATi_(3)Bi_(5)(A=Cs,Rb)provides a new platform to explore novel quantum phenomena.In this work,the transport properties of ATi_(3)Bi_(5)(A=Cs,Rb)are systematically in...The recently discovered titanium-based kagome metal ATi_(3)Bi_(5)(A=Cs,Rb)provides a new platform to explore novel quantum phenomena.In this work,the transport properties of ATi_(3)Bi_(5)(A=Cs,Rb)are systematically investigated under high pressure.Although ATi_(3)Bi_(5)(A=Cs,Rb)shows no evidence of superconductivity at ambient pressure,the pressure-induced double-dome superconductivity is observed in both compounds,resembling the superconducting phase diagram of AV_(3)Sb_(5)(A=Cs,Rb,and K)under pressure.High-pressure X-ray difraction measurements exclude the pressure-induced structural phase transition.A slope change in the c/a ratio was found between 12.4 and 14.9 GPa,indicating the occurrence of lattice distortion.The distinct changes in the electronic band structure revealed by frst-principles calculations further explain the emergence of superconductivity in the two domes.These fndings suggest that pressure can efectively tune the electronic properties of ATi_(3)Bi_(5),providing new insights into the rich physics of kagome metals.展开更多
Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport pr...Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).展开更多
Background Hypertension is associated with an increased risk of calcific aortic valve stenosis(CAVS).However,the directionality of causation between blood pressure traits and aortic stenosis is unclear,as is the benef...Background Hypertension is associated with an increased risk of calcific aortic valve stenosis(CAVS).However,the directionality of causation between blood pressure traits and aortic stenosis is unclear,as is the benefit of antihypertensive drugs for CAVS.Methods Using genome-wide association studies(GWAS)summary statistics,we performed bidirectional two-sample univariable mendelian randomization(UVMR)to assess the causal associations of systolic blood pressure(SBP),diastolic blood pressure(DBP),and pulse pressure(PP)with CAVS.Multivariable mendelian randomization(MVMR)was conducted to evaluate the direct effect of hypertension on CAVS,adjusting for confounders.Drug target mendelian randomization(MR)and summary-level MR(SMR)were used to estimate the effects of 12 classes of antihypertensive drugs and their target genes on CAVS risk.Inverse variance weighting was the primary MR method,with sensitivity analyses to validate results.Results UVMR showed SBP,DBP,and PP have causal effects on CAVS,with no significant reverse causality.MVMR confirmed the causality between hypertension and CAVS after adjusting for confounders.Drug-target MR analyses indicated that calcium channel blockers(CCBs),loop diuretics,and thiazide diuretics via SBP lowering exerted protective effects on CAVS risk.SMR analysis showed that the CCBs target gene CACNA2D2 and ARBs target gene AGTR1 were positively associated with CAVS risk,while diuretics target genes SLC12A5 and SLC12A1 were negatively associated with aortic stenosis risk.Conclusions Hypertension has a causal relationship with CAVS.Managing SBP in hypertensive patients with CCBs may prevent CAVS.ARBs might exert protective effects on CAVS independent of blood pressure reduction.The relationship between diuretics and CAVS is complex,with opposite effects through different mechanisms.展开更多
0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribut...0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribute the stress field,while evolving stress states in turn alter pore pressure.This reciprocity,governed by poroelasticity and multiphysics interactions,underlies a wide spectrum of geomechanical processes,including fracture initiation,fluid migration,reservoir evolution,and fault slip or seismicity(Xu et al.,2020).Conventional theories often treat pressure and stress as independent variables.展开更多
The safety of the initial support during the construction of inclined shafts in tunnels traversing through high-hydraulic-pressure surrounding rocks is paramount.This study examines a high-hydraulic-pressure inclined ...The safety of the initial support during the construction of inclined shafts in tunnels traversing through high-hydraulic-pressure surrounding rocks is paramount.This study examines a high-hydraulic-pressure inclined shaft of a tunnel in Western Sichuan Province to analyze the damage characteristics of the initial support and propose a radial drainage and decompression treatment method.Field monitoring was conducted to assess the load and deformation of the initial support structure,and on-site investigations identified the distribution of cracked areas.In addition,numerical simulations were performed to evaluate the force and deformation characteristics of the initial support structure,which were then compared with field observations for validation.The variations in the lateral pressure coefficient and water pressure were evaluated.The results revealed that damage was primarily concentrated in the shoulder,spring line,and knee areas,with the bending moment at the knee increasing by up to 66.9%.The application of the radial drainage and decompression treatment method effectively reduced water pressure loads on the initial support.Post-treatment analysis indicated significant reductions in axial force and bending moment,enhancing structural stability.These findings provide valuable insights for improving the safety and durability of initial support systems in inclined shafts of high-hydraulicpressure railroad tunnels.展开更多
BACKGROUND Patients with paraplegia are vulnerable to ischial pressure ulcers.Surgical treatments often lead to complications such as seroma and infection,necessitating repeated interventions that increase surgical di...BACKGROUND Patients with paraplegia are vulnerable to ischial pressure ulcers.Surgical treatments often lead to complications such as seroma and infection,necessitating repeated interventions that increase surgical difficulty.This case report aimed to introduce a novel treatment strategy combining negative pressure wound therapy(NPWT)with a fenestrated Penrose drain to manage refractory seroma in patients with a history of ischial pressure ulcers.CASE SUMMARY A 63-year-old woman presented with soft tissue defects on the left ischium and right trochanter.After surgical debridement,an inferior gluteal artery perforator(IGAP)flap was used to reconstruct the left ischium.NPWT was applied at a setting of 75 mmHg on postoperative day 3 owing to the development of seroma,combined with a fenestrated Penrose drain to facilitate effective drainage of serous fluid.A 54-year-old man presented with a 4 cm×2 cm ulcer on the left ischium after previous excision and flap coverage.After thorough debridement,the IGAP flap was elevated,and NPWT with a fenestrated Penrose drain was implemented immediately postoperatively at 75 mmHg to promote drainage.Both patients achieved a stable recovery without complications.CONCLUSION NPWT combined with a fenestrated Penrose drain placement is a promising strategy for addressing refractory seromas in cases of complex pressure ulcers.展开更多
Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and ...Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and healthy lifestyle index (HLI)with BP control among hypertension patients is seldom reported,which needs to provide more evidence by prospective intervention studies.We examined the association of antihypertensive medication use and HLI with BP control among employees with hypertension in China based on a workplace-based multicomponent intervention program.Methods Between January 2013 and December 2014,a cluster randomized clinical trial of a workplace-based multicomponent intervention program was conducted in 60 workplaces across 20 urban areas in China.Workplaces were randomly divided into intervention (n=40) and control (n=20) groups.Basic information on employees at each workplace was collected by trained professionals,including sociodemographic characteristics,medical history,family history,lifestyle behaviors,medication status and physical measurements.After baseline,the intervention group received a 2-year intervention to achieve BP control,which included:(1) a workplace wellness program for all employees;(2) a guidelines-oriented hypertension management protocol.HLI including nonsmoking,nondrinking,adequate physical activity,weight within reference range and balanced diet,were coded on a 5-point scale (range:0-5,with higher score indicating a healthier lifestyle).Antihypertensive medication use was defined as taking drug within the last 2 weeks.Changes in HLI,antihypertensive medication use and BP control from baseline to 24 months were measured after the intervention.Results Overall,4655 employees were included (age:46.3±7.6 years,men:3547 (82.3%)).After 24 months of the intervention,there was a significant improvement in lifestyle[smoking (OR=0.65,95%CI:0.43-0.99;P=0.045),drinking (OR=0.52,95%CI:0.40-0.68;P<0.001),regular exercise (OR=3.10,95%CI:2.53-3.78;P<0.001),excessive intake of fatty food (OR=0.17,95%CI:0.06-0.52;P=0.002),restrictive use of salt (OR=0.26,95%CI:0.12-0.56;P=0.001)].Compare to employees with a deteriorating lifestyle after the intervention,those with an improved lifestyle had a higher BP control.In the intervention group,compared with employees not using antihypertensive medication,those who consistent used (OR=2.34;95%CI:1.16-4.72;P=0.017) or changed from not using to using antihypertensive medication (OR=2.24;95%CI:1.08-4.62;P=0.030) had higher BP control.Compared with those having lower HLI,participants with a same (OR=1.38;95%CI:0.99-1.93;P=0.056) or high (OR=1.79;95%CI:1.27~2.53;P<0.001) HLI had higher BP control.Those who used antihypertensive medication and had a high HLI had the highest BP control (OR=1.88;95%CI:1.32-2.67,P<0.001).Subgroup analysis also showed the consistent effect as the above.Conclusion These findings suggest that adherence to antihypertensive medication treatment and healthy lifestyle were associated with a significant improvement in BP control among employees with hypertension.展开更多
The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stab...The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.展开更多
Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmen...Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmental Pressure Index(AEPI)and employs a dynamic comprehensive method to evaluate China’s Atmospheric Environmental Pressure(AEP)across 31 provinces from 2008 to 2017.The drivers of AEP were analyzed using a spatial panel data model,uncovering the integral role of pollution reduction policies,particularly the Air Pollution Prevention and Control Action Plan,which led to a 25%reduction in AEP during its enforcement.Our findings reveal significant spatial disparities in AEP,with higher levels in the Beijing-Tianjin-Hebei and Yangtze River Delta regions.The regression analysis identifies economic development,industrial structure,energy efficiency,environmental regulations,and urbanization as key influencing factors,though their impacts vary across different regions,suggesting the need for region-specific pollution control policies.Furthermore,the shift in the AEP gravity center from2008 to 2017 indicated a southeastward movement,suggesting the necessity to focus air pollution control efforts on the southeast provinces.In conclusion,the AEPI developed in this study enables comparative analysis of AEP across different regions and facilitates the monitoring of long-term trends,which is valuable in guiding regional air pollution control in China.展开更多
By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture defor...By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.展开更多
Landslides triggered by high gas pressure represent a distinct geotechnical hazard,especially in scenarios without significant rainfall.Recent studies have revealed that high-pressure gas accumulation within slopes ca...Landslides triggered by high gas pressure represent a distinct geotechnical hazard,especially in scenarios without significant rainfall.Recent studies have revealed that high-pressure gas accumulation within slopes can be a dominant trigger for large-scale failures although the processes behind this remain not well understood.This study examines how unsaturated soil slopes fail under high gas pressure using a combination of laboratory experiments and numerical simulations.A key discovery is that gas pressure changes slope stability by redistributing pore fluids and altering effective stress,with distinct depthdependent effects.Moreover,a novel concept of critical stable gas pressure(P_(ac))is proposed as a practical threshold for stability assessment,which is depthdependent,with extreme values at shallow and intermediate depths,reflecting the interplay between gas diffusion and overburden resistance.This study advances the mechanistic understanding of gasinduced slope instability and offers actionable benchmarks for managing related risks in engineering projects including waste landfill management and shale gas operations.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
The current research of master cylinder pressure estimation mainly relies on hydraulic characteristic or vehicle dynamics.But they are not independently applicable to any environment and have their own scope of applic...The current research of master cylinder pressure estimation mainly relies on hydraulic characteristic or vehicle dynamics.But they are not independently applicable to any environment and have their own scope of application.In addition,about the master cylinder pressure control,there are few studies that can simultaneously balance pressure building accuracy,speed,and prevent pressure overshoot and jitter.In this paper,an adaptative fusion method based on electro-hydraulic characteristic and vehicle mode is proposed to estimate the master cylinder pressure.The fusion strategy is mainly based on the prediction performance of two algorithms under different vehicle speeds,pressures,and ABS states.Apart from this,this article also includes real-time prediction of the friction model based on RLS to improve the accuracy of the electro-hydraulic mode.In order to simultaneously balance pressure control accuracy,response speed,and prevent overshoot and jitter,this article proposes an adaptative LQR controller for MC pressure control which uses fuzzy-logic controller to adjust the weights of LQR controller based on target pressure and difference compared with actual pressure.Through mode-in-loop and hardware-in-loop tests in ramp,step and sinusoidal response,the whole estimation and control system is verified based on real hydraulic system and the performance is satisfactory under these scenes.This research proposes an adaptative pressure estimation and control architecture for integrated electro-hydraulic brake system which could eliminate pressure sensors in typical scenarios and ensure the comprehensive performance of pressure control.展开更多
AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Can...AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Cannulation of the subarachnoid space was performed after completion of routine vitrectomy steps.An XEN 45 implant was inserted into the created puncture to communicate between the vitreous body and subarachnoid space.Intraocular pressure(IOP),fundus photography,and spectral-domain optical coherence tomography were assessed at baseline and regular intervals during follow-up.RESULTS:All operated eyes showed IOP reduction in the first postoperative month.Two(2/3)normal eyes and one(1/2)glaucomatous eye maintained lower IOP until 18mo after operation.The XEN 45 implant remained positioned through the lamina cribrosa in all normal eyes but was not detected in two glaucomatous eyes.Complications observed in this study included retinal vascular bleeding in 1/3 normal eyes and XEN implant dislocation in all 2 glaucomatous eyes.CONCLUSION:Subarachnoid space cannulation and mini-shunt implantation may contribute to IOP reduction,possibly by rebalancing translaminar pressure difference and enhancing aqueous humor drainage.The development of a suitable mini-shunt requires further investigation.展开更多
BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal ...BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal hypertension(PH).AIM To investigate the anatomical characteristics of balloon-occluded hepatic venous angiography in patients with PH and analyze the relationship between the WHVP and portal venous pressure(PVP).METHODS This retrospective study included 877 patients with PH who met the inclusion criteria from January 2020 to June 2024.Routine and innovative hepatic venous angiography was performed during transjugular intrahepatic portosystemic shunt procedures to measure hepatic venous and PVPs.All patients'angiographic images were collected for analysis.The associations between WHVP and PVP in each group were analyzed via linear regression analysis,and a predictive model was established.RESULTS The 877 patients had a mean age of 52.6±13.0 years,with 582 males and 295 females.Patients were categorized into four groups on the basis of their anatomical structure.All groups showed strong correlations between WHVP and PVP.The regression coefficient between the WHVP and PVP in the hepatic right vein-portal venous angiography group was 0.884(P<0.05);in the hepatic right vein-accessory hepatic venous angiography group,it was 0.721(P<0.05);in the hepatic right vein-middle hepatic venous angiography group,it was 0.344(P<0.05);and in the hepatic right vein-nonangiography group,it was 0.293(P<0.05).CONCLUSION The presence and anatomical classification of hepatic venous collaterals are key factors influencing the relationship between WHVP with and PVP.Based on the different anatomical classifications of hepatic veins,WHVP can be used to estimate PVP,improving the accuracy of PVP prediction.展开更多
文摘Portal hypertension is a critical determinant of prognosis in chronic liver disease and a key factor in evaluating candidates for liver transplantation.Traditional methods such as hepatic venous pressure gradient(HVPG)measurement have long been considered the gold standard for assessing portal pressure.However,these methods are invasive and carry procedural limitations.Recent advances in endoscopic ultrasound(EUS)-guided techniques have emerged as promising alternatives,offering direct and minimally invasive assessment of portal pressure.EUS-guided portal pressure gradient measurement enables real-time evaluation of haemodynamic through direct access to the portal system.This technique has shown to be as accurate as HVPG,and it has some extra benefits,like the ability to take liver biopsies and check collateral circulation all at the same time.Despite these benefits,the technique poses challenges such as operator dependence,proce-dural complexity,and limited standardization across centres.This minireview highlights the evolution of portal pressure measurement,focusing on the potential of EUS-guided techniques in pre-transplant assessment,risk strati-fication,and monitoring therapeutic outcomes.Furthermore,it discusses the technical challenges,clinical implications,and future directions for integrating these innovations into routine practice.Advances in portal pressure measurement hold significant promise for enhancing decision-making and outcomes in liver transplantation.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.42272041 and 52302043)+2 种基金the National Natural Science Foundation of China(Grant No.U23A20561)the Jilin University High-level Innovation Team Foundation(Grant No.2021TD–05)the Shanghai Synchrotron Radiation Facility(Grant Nos.2024-SSRF-PT-510031 and 505511).
文摘The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金supported by the Science and Technology Development Project of Jilin Province(Grant No.SKL202402004)the Program for the Development of Science and Technology of Jilin Province(Grant No.YDZJ202201ZYTS308)+1 种基金the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,Jilin University(Grant Nos.202216 and 2022-23)the National Natural Science Foundation of China(Grant No.12350410372)。
文摘In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning strategy using compressible layered 2H-MoTe2,achieving an effective decoupling between the electrical conductivity and Seebeck coefficient.The applied pressure simultaneously induces two complementary effects:(1)bandgap reduction that moderately enhances carrier concentration to improve the electrical conductivity,and(2)band convergence that dramatically increases density-of-states effective mass to boost the Seebeck coefficient.This dual mechanism yields an extraordinary 18.5-fold enhancement in the average power factor.First-principles calculations and Boltzmann transport modeling precisely reproduce the experimental observations,validating this pressure-induced decoupling mechanism.The pressure-tuning mechanism provides a feasible and effective strategy for breaking through the optimization limits of the power factor,facilitating the design of high-performance thermoelectric materials.
文摘Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure injuries (PI), result from the pression exerted by devices (or their fixation systems) applied for diagnostic and therapeutic purposes. MDRPI represent a serious problem for patients and healthcare systems. Understanding potential risk factors is an important step in implementing effective interventions. Methods: In this study, we will perform a systematic review;if possible, also a meta-analysis will be performed. The review will follow the preferred reporting items for systematic reviews and meta-analyses (PRISMA) reporting guidelines for systematic reviews. A rigorous literature search will be conducted both in electronic databases (Medline/PubMed, Embase, CINAHL, Web of Science, Scopus, Cochrane Library) to identify studies published since 2000 and in gray literature for unpublished studies. Pairs of researchers will identify relevant evidence, extract data, and assess risk of bias independently in each eligible study. Factors associated with the occurrence of MDRPI are considered the primary outcome. Secondary outcomes are prevalence and incidence of MDRPI, length of hospital stay, infections, and death. The evidence will be synthesized using the GRADE methodology. Results: Results are not currently available as this is a protocol for a systematic review. Conclusions: This systematic review will identify evidence on risk factors for developing MDRPI. We are confident that the results of this review will help to improve clinical practice and guide future research.
基金supported by the Natural Science Foundation of China(Grant No.12174064)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)+5 种基金the Innovation Program for Quantum Science and Technology(Grant No.2024ZD0300104)the support by the Natural Science Foundation of China(Grant No.12204383)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2023QNRC001)the Young Talent Fund of the Association for Science and Technology in Shaanxi(Grant No.CLGC202201)supported by the open project of Beijing National Laboratory for Condensed Matter Physics(Grant No.ZBJ2106110017)the Double First-Class Initiative Fund of Shanghai Tech University。
文摘The recently discovered titanium-based kagome metal ATi_(3)Bi_(5)(A=Cs,Rb)provides a new platform to explore novel quantum phenomena.In this work,the transport properties of ATi_(3)Bi_(5)(A=Cs,Rb)are systematically investigated under high pressure.Although ATi_(3)Bi_(5)(A=Cs,Rb)shows no evidence of superconductivity at ambient pressure,the pressure-induced double-dome superconductivity is observed in both compounds,resembling the superconducting phase diagram of AV_(3)Sb_(5)(A=Cs,Rb,and K)under pressure.High-pressure X-ray difraction measurements exclude the pressure-induced structural phase transition.A slope change in the c/a ratio was found between 12.4 and 14.9 GPa,indicating the occurrence of lattice distortion.The distinct changes in the electronic band structure revealed by frst-principles calculations further explain the emergence of superconductivity in the two domes.These fndings suggest that pressure can efectively tune the electronic properties of ATi_(3)Bi_(5),providing new insights into the rich physics of kagome metals.
基金supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406100, 2022YFA1403900, 2024YFA1408400, 2021YFA1400200, 2022YFA1403800, and 2023YFA1406500)the National Natural Science Foundation of China (Grant Nos. 12174424, 12025408, 11921004, U22A6005, and 12274459)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023007)the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2024PG0003)。
文摘Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).
基金supported by the National Natural Science Foundation of China(82170375,U23A20395)1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University(ZYGD23021,23HXF-H009)Sichuan Science and Technology Program 2023NSFSC1645。
文摘Background Hypertension is associated with an increased risk of calcific aortic valve stenosis(CAVS).However,the directionality of causation between blood pressure traits and aortic stenosis is unclear,as is the benefit of antihypertensive drugs for CAVS.Methods Using genome-wide association studies(GWAS)summary statistics,we performed bidirectional two-sample univariable mendelian randomization(UVMR)to assess the causal associations of systolic blood pressure(SBP),diastolic blood pressure(DBP),and pulse pressure(PP)with CAVS.Multivariable mendelian randomization(MVMR)was conducted to evaluate the direct effect of hypertension on CAVS,adjusting for confounders.Drug target mendelian randomization(MR)and summary-level MR(SMR)were used to estimate the effects of 12 classes of antihypertensive drugs and their target genes on CAVS risk.Inverse variance weighting was the primary MR method,with sensitivity analyses to validate results.Results UVMR showed SBP,DBP,and PP have causal effects on CAVS,with no significant reverse causality.MVMR confirmed the causality between hypertension and CAVS after adjusting for confounders.Drug-target MR analyses indicated that calcium channel blockers(CCBs),loop diuretics,and thiazide diuretics via SBP lowering exerted protective effects on CAVS risk.SMR analysis showed that the CCBs target gene CACNA2D2 and ARBs target gene AGTR1 were positively associated with CAVS risk,while diuretics target genes SLC12A5 and SLC12A1 were negatively associated with aortic stenosis risk.Conclusions Hypertension has a causal relationship with CAVS.Managing SBP in hypertensive patients with CCBs may prevent CAVS.ARBs might exert protective effects on CAVS independent of blood pressure reduction.The relationship between diuretics and CAVS is complex,with opposite effects through different mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.U24B6002,42488101)the Key R&D Program of Shandong Province,China(No.2024CXPT076)the Independent innovation research program of China University of Petroleum(East China)(No.21CX06001A)。
文摘0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribute the stress field,while evolving stress states in turn alter pore pressure.This reciprocity,governed by poroelasticity and multiphysics interactions,underlies a wide spectrum of geomechanical processes,including fracture initiation,fluid migration,reservoir evolution,and fault slip or seismicity(Xu et al.,2020).Conventional theories often treat pressure and stress as independent variables.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277165,41920104007)the Hubei Natural Science Foundation(Grant No.2023AFD217).
文摘The safety of the initial support during the construction of inclined shafts in tunnels traversing through high-hydraulic-pressure surrounding rocks is paramount.This study examines a high-hydraulic-pressure inclined shaft of a tunnel in Western Sichuan Province to analyze the damage characteristics of the initial support and propose a radial drainage and decompression treatment method.Field monitoring was conducted to assess the load and deformation of the initial support structure,and on-site investigations identified the distribution of cracked areas.In addition,numerical simulations were performed to evaluate the force and deformation characteristics of the initial support structure,which were then compared with field observations for validation.The variations in the lateral pressure coefficient and water pressure were evaluated.The results revealed that damage was primarily concentrated in the shoulder,spring line,and knee areas,with the bending moment at the knee increasing by up to 66.9%.The application of the radial drainage and decompression treatment method effectively reduced water pressure loads on the initial support.Post-treatment analysis indicated significant reductions in axial force and bending moment,enhancing structural stability.These findings provide valuable insights for improving the safety and durability of initial support systems in inclined shafts of high-hydraulicpressure railroad tunnels.
基金Supported by Research fund of Dankook University in 2023,No.R202300627.
文摘BACKGROUND Patients with paraplegia are vulnerable to ischial pressure ulcers.Surgical treatments often lead to complications such as seroma and infection,necessitating repeated interventions that increase surgical difficulty.This case report aimed to introduce a novel treatment strategy combining negative pressure wound therapy(NPWT)with a fenestrated Penrose drain to manage refractory seroma in patients with a history of ischial pressure ulcers.CASE SUMMARY A 63-year-old woman presented with soft tissue defects on the left ischium and right trochanter.After surgical debridement,an inferior gluteal artery perforator(IGAP)flap was used to reconstruct the left ischium.NPWT was applied at a setting of 75 mmHg on postoperative day 3 owing to the development of seroma,combined with a fenestrated Penrose drain to facilitate effective drainage of serous fluid.A 54-year-old man presented with a 4 cm×2 cm ulcer on the left ischium after previous excision and flap coverage.After thorough debridement,the IGAP flap was elevated,and NPWT with a fenestrated Penrose drain was implemented immediately postoperatively at 75 mmHg to promote drainage.Both patients achieved a stable recovery without complications.CONCLUSION NPWT combined with a fenestrated Penrose drain placement is a promising strategy for addressing refractory seromas in cases of complex pressure ulcers.
基金supported by grant 2011BAI11B01 from the Projects in the Chinese National Science and Technology Pillar Program during the 12th Five-year Plan Periodby grant 2017-I2M-1-004 from the Chinese Academy of Medical Science Innovation Fund for Medical Sciencesby the Major science and technology special plan project of Yunnan Province (202302AA310045)。
文摘Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and healthy lifestyle index (HLI)with BP control among hypertension patients is seldom reported,which needs to provide more evidence by prospective intervention studies.We examined the association of antihypertensive medication use and HLI with BP control among employees with hypertension in China based on a workplace-based multicomponent intervention program.Methods Between January 2013 and December 2014,a cluster randomized clinical trial of a workplace-based multicomponent intervention program was conducted in 60 workplaces across 20 urban areas in China.Workplaces were randomly divided into intervention (n=40) and control (n=20) groups.Basic information on employees at each workplace was collected by trained professionals,including sociodemographic characteristics,medical history,family history,lifestyle behaviors,medication status and physical measurements.After baseline,the intervention group received a 2-year intervention to achieve BP control,which included:(1) a workplace wellness program for all employees;(2) a guidelines-oriented hypertension management protocol.HLI including nonsmoking,nondrinking,adequate physical activity,weight within reference range and balanced diet,were coded on a 5-point scale (range:0-5,with higher score indicating a healthier lifestyle).Antihypertensive medication use was defined as taking drug within the last 2 weeks.Changes in HLI,antihypertensive medication use and BP control from baseline to 24 months were measured after the intervention.Results Overall,4655 employees were included (age:46.3±7.6 years,men:3547 (82.3%)).After 24 months of the intervention,there was a significant improvement in lifestyle[smoking (OR=0.65,95%CI:0.43-0.99;P=0.045),drinking (OR=0.52,95%CI:0.40-0.68;P<0.001),regular exercise (OR=3.10,95%CI:2.53-3.78;P<0.001),excessive intake of fatty food (OR=0.17,95%CI:0.06-0.52;P=0.002),restrictive use of salt (OR=0.26,95%CI:0.12-0.56;P=0.001)].Compare to employees with a deteriorating lifestyle after the intervention,those with an improved lifestyle had a higher BP control.In the intervention group,compared with employees not using antihypertensive medication,those who consistent used (OR=2.34;95%CI:1.16-4.72;P=0.017) or changed from not using to using antihypertensive medication (OR=2.24;95%CI:1.08-4.62;P=0.030) had higher BP control.Compared with those having lower HLI,participants with a same (OR=1.38;95%CI:0.99-1.93;P=0.056) or high (OR=1.79;95%CI:1.27~2.53;P<0.001) HLI had higher BP control.Those who used antihypertensive medication and had a high HLI had the highest BP control (OR=1.88;95%CI:1.32-2.67,P<0.001).Subgroup analysis also showed the consistent effect as the above.Conclusion These findings suggest that adherence to antihypertensive medication treatment and healthy lifestyle were associated with a significant improvement in BP control among employees with hypertension.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122405,12274169,and 11574109)the Fundamental Research Funds for the Central Universities。
文摘The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.
文摘Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmental Pressure Index(AEPI)and employs a dynamic comprehensive method to evaluate China’s Atmospheric Environmental Pressure(AEP)across 31 provinces from 2008 to 2017.The drivers of AEP were analyzed using a spatial panel data model,uncovering the integral role of pollution reduction policies,particularly the Air Pollution Prevention and Control Action Plan,which led to a 25%reduction in AEP during its enforcement.Our findings reveal significant spatial disparities in AEP,with higher levels in the Beijing-Tianjin-Hebei and Yangtze River Delta regions.The regression analysis identifies economic development,industrial structure,energy efficiency,environmental regulations,and urbanization as key influencing factors,though their impacts vary across different regions,suggesting the need for region-specific pollution control policies.Furthermore,the shift in the AEP gravity center from2008 to 2017 indicated a southeastward movement,suggesting the necessity to focus air pollution control efforts on the southeast provinces.In conclusion,the AEPI developed in this study enables comparative analysis of AEP across different regions and facilitates the monitoring of long-term trends,which is valuable in guiding regional air pollution control in China.
基金Supported by the Joint Fund Key Program of the National Natural Science Foundation of China(U21B2069)Key Research and Development Program of Shandong Province(2022CXGC020407)Basic Science Center Program of the National Natural Science Foundation of China(52288101)。
文摘By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.
基金supported by the Postdoctoral Science Foundation of the Power China Chengdu Engineering Corporation Limited(No.P66725)Science and Technology Fund Support Project of Power China Chengdu Engineering Corporation.(No.PA1717)。
文摘Landslides triggered by high gas pressure represent a distinct geotechnical hazard,especially in scenarios without significant rainfall.Recent studies have revealed that high-pressure gas accumulation within slopes can be a dominant trigger for large-scale failures although the processes behind this remain not well understood.This study examines how unsaturated soil slopes fail under high gas pressure using a combination of laboratory experiments and numerical simulations.A key discovery is that gas pressure changes slope stability by redistributing pore fluids and altering effective stress,with distinct depthdependent effects.Moreover,a novel concept of critical stable gas pressure(P_(ac))is proposed as a practical threshold for stability assessment,which is depthdependent,with extreme values at shallow and intermediate depths,reflecting the interplay between gas diffusion and overburden resistance.This study advances the mechanistic understanding of gasinduced slope instability and offers actionable benchmarks for managing related risks in engineering projects including waste landfill management and shale gas operations.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
基金Supported by National Natural Science Foundation of China(Grant Nos.52202494,52202495)Chongqing Special Project for Technological Innovation and Application Development(Grant No.CSTB2022TIAD-DEX0014).
文摘The current research of master cylinder pressure estimation mainly relies on hydraulic characteristic or vehicle dynamics.But they are not independently applicable to any environment and have their own scope of application.In addition,about the master cylinder pressure control,there are few studies that can simultaneously balance pressure building accuracy,speed,and prevent pressure overshoot and jitter.In this paper,an adaptative fusion method based on electro-hydraulic characteristic and vehicle mode is proposed to estimate the master cylinder pressure.The fusion strategy is mainly based on the prediction performance of two algorithms under different vehicle speeds,pressures,and ABS states.Apart from this,this article also includes real-time prediction of the friction model based on RLS to improve the accuracy of the electro-hydraulic mode.In order to simultaneously balance pressure control accuracy,response speed,and prevent overshoot and jitter,this article proposes an adaptative LQR controller for MC pressure control which uses fuzzy-logic controller to adjust the weights of LQR controller based on target pressure and difference compared with actual pressure.Through mode-in-loop and hardware-in-loop tests in ramp,step and sinusoidal response,the whole estimation and control system is verified based on real hydraulic system and the performance is satisfactory under these scenes.This research proposes an adaptative pressure estimation and control architecture for integrated electro-hydraulic brake system which could eliminate pressure sensors in typical scenarios and ensure the comprehensive performance of pressure control.
文摘AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Cannulation of the subarachnoid space was performed after completion of routine vitrectomy steps.An XEN 45 implant was inserted into the created puncture to communicate between the vitreous body and subarachnoid space.Intraocular pressure(IOP),fundus photography,and spectral-domain optical coherence tomography were assessed at baseline and regular intervals during follow-up.RESULTS:All operated eyes showed IOP reduction in the first postoperative month.Two(2/3)normal eyes and one(1/2)glaucomatous eye maintained lower IOP until 18mo after operation.The XEN 45 implant remained positioned through the lamina cribrosa in all normal eyes but was not detected in two glaucomatous eyes.Complications observed in this study included retinal vascular bleeding in 1/3 normal eyes and XEN implant dislocation in all 2 glaucomatous eyes.CONCLUSION:Subarachnoid space cannulation and mini-shunt implantation may contribute to IOP reduction,possibly by rebalancing translaminar pressure difference and enhancing aqueous humor drainage.The development of a suitable mini-shunt requires further investigation.
基金Supported by Capital Medical University Affiliated Beijing Shijitan Hospital Talent Development Program during the 14th Five-Year Plan,No.2023 LJRCLFQ.
文摘BACKGROUND Wedged hepatic venous pressure(WHVP)is a crucial variable for accurately assessing the hepatic venous pressure gradient(HVPG)and is vital for the diagnosis and prognostic evaluation of patients with portal hypertension(PH).AIM To investigate the anatomical characteristics of balloon-occluded hepatic venous angiography in patients with PH and analyze the relationship between the WHVP and portal venous pressure(PVP).METHODS This retrospective study included 877 patients with PH who met the inclusion criteria from January 2020 to June 2024.Routine and innovative hepatic venous angiography was performed during transjugular intrahepatic portosystemic shunt procedures to measure hepatic venous and PVPs.All patients'angiographic images were collected for analysis.The associations between WHVP and PVP in each group were analyzed via linear regression analysis,and a predictive model was established.RESULTS The 877 patients had a mean age of 52.6±13.0 years,with 582 males and 295 females.Patients were categorized into four groups on the basis of their anatomical structure.All groups showed strong correlations between WHVP and PVP.The regression coefficient between the WHVP and PVP in the hepatic right vein-portal venous angiography group was 0.884(P<0.05);in the hepatic right vein-accessory hepatic venous angiography group,it was 0.721(P<0.05);in the hepatic right vein-middle hepatic venous angiography group,it was 0.344(P<0.05);and in the hepatic right vein-nonangiography group,it was 0.293(P<0.05).CONCLUSION The presence and anatomical classification of hepatic venous collaterals are key factors influencing the relationship between WHVP with and PVP.Based on the different anatomical classifications of hepatic veins,WHVP can be used to estimate PVP,improving the accuracy of PVP prediction.