A pre-swirl system with a multi-chamber structure is crucial to the secondary air system of an aero engine.The airflow within the pre-swirl system(characterized by high-speed rotation and compressible flow)is complica...A pre-swirl system with a multi-chamber structure is crucial to the secondary air system of an aero engine.The airflow within the pre-swirl system(characterized by high-speed rotation and compressible flow)is complicated.During transient processes in aero engine operation,the pre-swirl system is subjected to upstream fluctuations,which is a less studied aspect.This paper delves into the unsteady flow characteristics within the pre-swirl system.We investigate the influence of different pressure-fluctuation boundary conditions,corresponding to step function,ramp function,and sine function,on the transient response characteristics of the pre-swirl system.The results indicate that the response characteristics are strongly affected by the upstream boundary conditions.An obvious overshoot phenomenon is observed in the actual temperature drop under the step and ramp function conditions.The peak time of the step function is 75%shorter compared to the ramp function.Furthermore,the flow parameters exhibit nonlinear growth during the transient process,emphasizing the need for consideration in future quasi-steady simulations.For the sine function condition,the pressure-fluctuation frequency minimally affects stable values of mass flow rate and actual temperature drop but exerts a substantial influence on the maximum deviation of actual temperature drop of the system.As the frequency increases from 100 Hz to 200 Hz,the maximum deviations for actual temperature drop change from around±13 K to±10 K.展开更多
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri...The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.展开更多
In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimenta...In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened.展开更多
An experimental investigation into pre-swirl effectiveness and receiver hole discharge coefficient characteristics for a high radius injection pre-swirl cooling systems was carried out on a physically representative e...An experimental investigation into pre-swirl effectiveness and receiver hole discharge coefficient characteristics for a high radius injection pre-swirl cooling systems was carried out on a physically representative experimental rig with a 450 mm diameter rotor.The receiver holes and pre-swirl nozzle were located at a radius of 181 mm and 180 mm respectively.The experimental work was mainly conducted at 5 000~12 000 r/min,4 bar absolute pressure and 1.132 kg/s air supply.The maximum air supply temperature was 190 ℃.Pressure and temperature distributions in the pre-swirl system were examined with an emphasis on the velocity effectiveness of the pre-swirl system as a whole and on the discharge coefficients of the rotating 'receiver holes' in the rotor.The results showed that the velocity effectiveness increased with increasing swirl ratio resulting in reduced blade cooling flow temperature.Different seal flow configurations caused very different effectiveness at different speeds,but outflow through the inner and outer seals always gave the highest effectiveness compared other configurations.Increasing the seal flow rate reduced the effectiveness.For the coefficient of discharge,except for the low speed range,it increased with increase in swirl ratio for most speeds.展开更多
Investigating the interaction between purge flow and main flow in gas turbines is crucial for optimizing thermal management,and enhancing aerodynamic efficiency.Measuring the high-speed rotating rotor poses challenges...Investigating the interaction between purge flow and main flow in gas turbines is crucial for optimizing thermal management,and enhancing aerodynamic efficiency.Measuring the high-speed rotating rotor poses challenges;however,employing the pre-swirl method to model rotational effect can facilitate experimental measurements.This study evaluates the validity of the pre-swirl method for modeling rotational effects.Numerical simulations are conducted under both stationary conditions,with seven swirl ratios,and rotational conditions.The investigation focuses on the underlying mechanisms of pre-swirl and rotation.Pre-swirl and rotation impart circumferential velocity to the purge flow relative to the blade,resulting in a diminishing effect on endwall cooling.On the other hand,pre-swirl reduces the adverse pressure gradient,and the rotation generates Coriolis forces acting on the passage vortex,both contribute to an increasing effect on endwall cooling.Under pre-swirl condition,the diminishing effect is dominant,while in rotational condition,neither the diminishing nor the increasing effect exhibits an overwhelmingly dominant trend.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC0160000)the National Natural Science Foundation of China(No.52122603)+4 种基金the Excellence Research Group Program(No.52488101)the Shandong Provincial Natural Science Foundation of China(No.ZR2024JQ011)the Project of National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine(No.2023-JJ-Y04)the National Science and Technology Major Project of China(No.J2019-III-0003-0046)the Taishan Scholars Program of China.
文摘A pre-swirl system with a multi-chamber structure is crucial to the secondary air system of an aero engine.The airflow within the pre-swirl system(characterized by high-speed rotation and compressible flow)is complicated.During transient processes in aero engine operation,the pre-swirl system is subjected to upstream fluctuations,which is a less studied aspect.This paper delves into the unsteady flow characteristics within the pre-swirl system.We investigate the influence of different pressure-fluctuation boundary conditions,corresponding to step function,ramp function,and sine function,on the transient response characteristics of the pre-swirl system.The results indicate that the response characteristics are strongly affected by the upstream boundary conditions.An obvious overshoot phenomenon is observed in the actual temperature drop under the step and ramp function conditions.The peak time of the step function is 75%shorter compared to the ramp function.Furthermore,the flow parameters exhibit nonlinear growth during the transient process,emphasizing the need for consideration in future quasi-steady simulations.For the sine function condition,the pressure-fluctuation frequency minimally affects stable values of mass flow rate and actual temperature drop but exerts a substantial influence on the maximum deviation of actual temperature drop of the system.As the frequency increases from 100 Hz to 200 Hz,the maximum deviations for actual temperature drop change from around±13 K to±10 K.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026006)
文摘The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.
文摘In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened.
文摘An experimental investigation into pre-swirl effectiveness and receiver hole discharge coefficient characteristics for a high radius injection pre-swirl cooling systems was carried out on a physically representative experimental rig with a 450 mm diameter rotor.The receiver holes and pre-swirl nozzle were located at a radius of 181 mm and 180 mm respectively.The experimental work was mainly conducted at 5 000~12 000 r/min,4 bar absolute pressure and 1.132 kg/s air supply.The maximum air supply temperature was 190 ℃.Pressure and temperature distributions in the pre-swirl system were examined with an emphasis on the velocity effectiveness of the pre-swirl system as a whole and on the discharge coefficients of the rotating 'receiver holes' in the rotor.The results showed that the velocity effectiveness increased with increasing swirl ratio resulting in reduced blade cooling flow temperature.Different seal flow configurations caused very different effectiveness at different speeds,but outflow through the inner and outer seals always gave the highest effectiveness compared other configurations.Increasing the seal flow rate reduced the effectiveness.For the coefficient of discharge,except for the low speed range,it increased with increase in swirl ratio for most speeds.
基金supported by the National Natural Science Foundation of China(Grant No.52106064)。
文摘Investigating the interaction between purge flow and main flow in gas turbines is crucial for optimizing thermal management,and enhancing aerodynamic efficiency.Measuring the high-speed rotating rotor poses challenges;however,employing the pre-swirl method to model rotational effect can facilitate experimental measurements.This study evaluates the validity of the pre-swirl method for modeling rotational effects.Numerical simulations are conducted under both stationary conditions,with seven swirl ratios,and rotational conditions.The investigation focuses on the underlying mechanisms of pre-swirl and rotation.Pre-swirl and rotation impart circumferential velocity to the purge flow relative to the blade,resulting in a diminishing effect on endwall cooling.On the other hand,pre-swirl reduces the adverse pressure gradient,and the rotation generates Coriolis forces acting on the passage vortex,both contribute to an increasing effect on endwall cooling.Under pre-swirl condition,the diminishing effect is dominant,while in rotational condition,neither the diminishing nor the increasing effect exhibits an overwhelmingly dominant trend.