期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进PPYOLOE-R的遥感图像舰船目标检测 被引量:1
1
作者 陈天鹏 胡建文 李海涛 《计算机科学》 北大核心 2025年第S1期483-490,共8页
遥感图像背景复杂,处于遥感图像中的舰船目标与港口背景语义信息较为相似,并且部分舰船目标尺寸小且密集排列,现有深度学习目标检测算法易出现漏检、误检、精度不理想等问题。针对此问题,提出一种改进PPYOLOE-R的遥感图像舰船目标检测算... 遥感图像背景复杂,处于遥感图像中的舰船目标与港口背景语义信息较为相似,并且部分舰船目标尺寸小且密集排列,现有深度学习目标检测算法易出现漏检、误检、精度不理想等问题。针对此问题,提出一种改进PPYOLOE-R的遥感图像舰船目标检测算法,以PPYOLOE-R为基线,在颈部网络引入置换注意力机制,增强模型的特征提取能力;引入一种改进的Focal Loss,该损失可以关联类别分数与定位分数,对类别标签进行软化处理,提高模型对难易样本的区分能力。提取DOTA数据集中的舰船类别,制作DOTA_ships舰船数据集。在HRSC2016数据集和DOTA_ships舰船数据集上的实验结果表明,该方法的平均精确度分别为90.02%,89.90%,检测速度分别为48.2 FPS,41.5 FPS,召回率分别为97.9%,97.3%,平均精确度和召回率在对比方法中均为最优,检测速度仅次于PPYOLOE-R。 展开更多
关键词 遥感图像 舰船目标检测 ppyoloe-r 置换注意力 Focal Loss
在线阅读 下载PDF
基于改进PPYOLOE-R的信息码矫正研究
2
作者 赵云涛 肖俊杰 +1 位作者 李维刚 熊雅婷 《计算机工程》 CAS CSCD 北大核心 2024年第6期358-366,共9页
信息码识别技术推动着社会的进步,使人们的生活更加便捷。由于受所处拍照环境影响,信息码识别效果有待提高,而且信息码角度倾斜也会影响解码正确率。以基于信息码的电力互感器误差实验接线判断为背景,提出一种基于改进PPYOLOE-R的信息... 信息码识别技术推动着社会的进步,使人们的生活更加便捷。由于受所处拍照环境影响,信息码识别效果有待提高,而且信息码角度倾斜也会影响解码正确率。以基于信息码的电力互感器误差实验接线判断为背景,提出一种基于改进PPYOLOE-R的信息码矫正算法。首先以PPYOLOE-R检测算法为基础,融合轻量级网络ESNet,在提升精度的同时降低模型参数量;其次引入动态卷积进一步加强特征提取,减少模型因下采样丢失信息,加强模型通道特征提取能力;最后为满足人工智能(AI)边缘设备上的实时性要求,采用模型融合技术将推理模型进行融合,保证在模型精度不变的情况下提升模型检测速度。为丰富数据集,采用两步旋转数据增强和Mosaic+Mixup数据增强方法,充分利用数据集中已有信息,提高模型学习能力。实验结果表明,改进后算法精度达到89.46%,较原模型提升了1.95%,检测照片速度从每张154 ms提升至每张50 ms。相较其他算法,改进算法具有体积小和速度快的优势,通过算法矫正后的信息码,可显著提高解码效率和正确率。 展开更多
关键词 信息码矫正 人工智能边缘计算 ppyoloe-r算法 动态卷积 模型融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部