期刊文献+
共找到1,865篇文章
< 1 2 94 >
每页显示 20 50 100
Study on Physicochemical and Functional Properties of Soluble Dietary Fiber from Apple Pomace
1
作者 Lei WANG Ruihuan DU +6 位作者 Yanhua YAN Xueliang PANG Luman HUO Huihui Cao Shuo YANG Haihua JIANG Weili ZHENG 《Agricultural Biotechnology》 2025年第1期44-47,52,共5页
[Objectives]This study was conducted to investigate the physicochemical and functional properties of soluble dietary fiber(SDF)from apple pomace.[Methods]Soluble dietary fiber(SDF)from apple pomace was extracted by di... [Objectives]This study was conducted to investigate the physicochemical and functional properties of soluble dietary fiber(SDF)from apple pomace.[Methods]Soluble dietary fiber(SDF)from apple pomace was extracted by direct water extraction(W),lactic acid bacteria fermentation(F)and steam explosion(SE)respectively,and the extraction methods and physicochemical and functional characteristics were compared and analyzed.[Results]The solubility,water holding capacities,oil holding capacities and swelling capacities of W-SDF,F-SDF and SE-SDF were(2.13,3.95 and 5.13 g/g),(9.02,13.75 and 15.88 g/g),(2.13,4.08 and 5.11 g/g),and(10.82,14.03 and 15.77 ml/g),respectively.Their emulsifying activity,emulsifying stability and least gelation concentration were(30.28,47.95 and 58.72 ml/100 ml),(37.88,45.25 and 57.13 ml/100 ml),and(12.11,11.25 and 9.87%),respectively.The adsorption capacities of W-SDF,F-SDF and SE-SDF for heavy metals(Pb,As and Cu)in the intestinal environment(pH 7)were(162.7,183.5 and 197.3μmol/g),(132.8,156.7 and 168.9μmol/g),and(57.2,63.5 and 89.2μmol/g)respectively.In the gastric environment(pH 2),they were(72.8,110.5,138.9μmol/g),(82.1,112.5,135.7μmol/g),and(38.9,42.7,55.1μmol/g)respectively.[Conclusions]The study can provide a theoretical basis for functional modification and comprehensive utilization of dietary fiber from apple pomace. 展开更多
关键词 Apple pomace Soluble dietary fiber Extraction method Physicochemical characteristics functional performance
在线阅读 下载PDF
Preparation of Oat Bran Dietary Fiber by Steam Explosion and Its Functional Structure Characteristics
2
作者 Xueliang PANG Lei WANG +6 位作者 Yang GAO Ruihuan DU Huihui CAO Yanhua YAN Luman HUO Baiqin ZHENG Shuo YANG 《Agricultural Biotechnology》 2024年第6期52-54,62,共4页
[Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,t... [Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,the technical parameters for preparing dietary fiber by steam explosion were studied,and the functional and structural characteristics of DF before and after modification were discussed.[Results]The optimum conditions for extracting DF from oat bran by SE modification were steam explosion pressure of 0.6 MPa and holding time of 4 min.The extraction rate of DF reached 33.9%.The solubility,water holding capacity,oil holding capacity and swelling force of Control-DF were 78.35%,2.25 g/g,1.55 g/g and 3.05 ml/g,respectively,and those of SE-DF were 95.69%,3.28 g/g,2.18 g/g and 5.98 ml/g,respectively.After SE treatment,the scavenging rates of oat bran DF on DPPH,ABTS,O-2·and·OH were significantly higher than those of untreated samples.The scavenging ability on free radicals was enhanced.The scavenging rates of Control-DF on DPPH,ABTS,O-2·and·OH were 43.72%,50.26%,31.02%and 39.25%,respectively,and those of SE-DF were 70.25%,73.21%and 63.69%59.32%,respectively.The surface of modified DF showed an obvious honeycomb structure.[Conclusions]This study can provide reference for functional modifications and utilization of dietary fiber from oat bran. 展开更多
关键词 Oat bran Dietary fiber Steam explosion functional and structural property
在线阅读 下载PDF
Electrospinning-derived functional carbon-based materials for energy conversion and storage 被引量:2
3
作者 Xinyu Ren Hong Liu +1 位作者 Jingang Wang Jiayuan Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期3-13,共11页
The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable ... The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable energy,which contributes to reducing environmental hazards.For the past few years,in terms of electrocatalysis and energy storage,carbon fiber materials show great advantages due to its outstanding electrical conductivity,good flexibility and mechanical property.As a simple and low-cost technique,electrospinning can be employed to prepare various nanofibers.It is noted that the functional fiber materials with different special structure and composition can be obtained for energy conversion and storage by combining electrospinning with other post-processing.In this paper,the structural design,controllable synthesis and multifunctional applications of electrospinning-derived functional carbon-based materials(EFCMs)is reviewed.Firstly,we briefly introduce the history,basic principle and typical equipment of electrospinning.Then we discuss the strategies for preparing EFCMs with different structures and composition in detail.In addition,we show recently the application of advanced EFCMs in energy conversion and storage,such as nitrogen species reduction reaction,CO_(2) reduction reaction,oxygen reduction reaction,water-splitting,supercapacitors and ion batteries.In the end,we propose some perspectives on the future development direction of EFCMs. 展开更多
关键词 ELECTROSPINNING Carbon materials functional fiber Energy conversion Energy storage ELECTROCATALYSIS
原文传递
Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers 被引量:6
4
作者 Paa Kwasi Adusei Seyram Gbordzoe +6 位作者 Sathya Narayan Kanakaraj Yu-Yun Hsieh Noe T.Alvarez Yanbo Fang Kevin Johnson Colin McConnell Vesselin Shanov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期120-131,I0005,共13页
Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron micro... Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy(SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy(XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller(BET)measurements that the surface area of the CNT fibers was increased from 168.22 m^2/g to 208.01 m^2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability(93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 m A/cm^2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65%greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified. 展开更多
关键词 Oxygen plasma functionalization fiber supercapacitors CNT fiber electrodes Ionic liquid
在线阅读 下载PDF
Mechanism of Functional Responses to Loading of Carbon Fiber Reinforced Cement-based Composites 被引量:6
5
作者 JIANG Cuixiang LI Zhuoqiu +1 位作者 SONG Xianhui LU Yong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期571-573,共3页
Single fiber pull-out testing was conducted to study the origin of the functional responses to loading of carbon fiber reinforced cement-based composites. The variation of electrical resistance with the bonding force ... Single fiber pull-out testing was conducted to study the origin of the functional responses to loading of carbon fiber reinforced cement-based composites. The variation of electrical resistance with the bonding force on the fiber-matrix interface was measured. Single fiber electromechanical testing was also conducted by measuring the electrical resistance under static tension. Comparison of the results shows that the resistance increasing during single fiber pull-out is mainly due to the changes at the interface. The conduction mechanism of the composite can be explained by the tunneling model. The interfacial stress causes the deformation of interfacial structure and the interfacial debonding, which have influences on the tunneling effect and result in the change of resistance. 展开更多
关键词 carbon fiber functional response tunneling effect single pull-out CEMENT
在线阅读 下载PDF
Functionalized Fiber-Based Strain Sensors:Pathway to Next-Generation Wearable Electronics 被引量:24
6
作者 Zekun Liu Tianxue Zhu +4 位作者 Junru Wang Zijian Zheng Yi Li Jiashen Li Yuekun Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期90-128,共39页
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artific... Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artificial intelligence,and so forth.Much research has focused on fiber-based sensors due to the appealing performance of fibers,including processing flexibility,wearing comfortability,outstanding lifetime and serviceability,low-cost and large-scale capacity.Herein,we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors.We describe the approaches for preparing conductive fibers such as spinning,surface modification,and structural transformation.We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits.The applications toward motion detection,healthcare,man-machine interaction,future entertainment,and multifunctional sensing are summarized with typical examples.We finally critically analyze tough challenges and future remarks of fiber-based strain sensors,aiming to implement them in real applications. 展开更多
关键词 Wearable strain sensor fiber functionalization WEARABILITY Flexible electronics Conductive materials
在线阅读 下载PDF
Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers 被引量:10
7
作者 Rui-Han Zhang Xue-Tao Shi +4 位作者 Lin Tang Zheng Liu Jun-Liang Zhang Yong-Qiang Guo Jun-Wei Gu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第7期730-739,I0006,共11页
Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosil... Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively. 展开更多
关键词 Thermally conductive composites Glass fibers Epoxy resin Silica-sol Surface functionalization
原文传递
Effects of Different Drying Methods on the Functional and Structural Properties of Dietary Fiber from Peanut Shell 被引量:5
8
作者 Lei WANG Xishuang XING +6 位作者 Yang LIU Tian LIN Sining TANG Xin ZHOU Zhijun LIU Huihui CAO Yanhua YAN 《Agricultural Biotechnology》 CAS 2020年第3期128-132,共5页
[Objectives] This study was conducted to investigate the drying methods,functional and structure properties of dietary fiber( DF) from peanut shells.[Methods]Peanut shells were used as a raw material to prepare peanut... [Objectives] This study was conducted to investigate the drying methods,functional and structure properties of dietary fiber( DF) from peanut shells.[Methods]Peanut shells were used as a raw material to prepare peanut shell dietary fiber( DF) by hot air drying( HA) and vacuum freeze drying( VF),respectively,and their functional and structural characteristics were compared in detail. [Results]The solubility,water holding capacity,oil holding capacity and swelling capacity of HA-DF and VF-DF were 2. 15 %,7. 63 g/g,7. 73 g/g,10. 35 ml/g and 3. 85 %,14. 98 g/g,15. 25 g/g,15. 85 ml/g,respectively. The total phenol contents were 2. 623 and 5. 173 mg GAE/g,respectively. The IC(50) values of ·OH,O2^-· and DPPH free radicals were 4. 16 and 4. 09 mg/ml,7. 90 and 3. 32 mg/ml,and 3. 19 and 3. 09 mg/ml,respectively. The molecular weight of VF-DF was smaller,and it had narrow molecular weight distribution and denser particles. Electron microscopy showed that VF-DF had a porous network like honeycomb and swelled structure. [Conclusions]This study can provide a theoretical basis for the functional modification and comprehensive utilization of peanut shell dietary fiber. 展开更多
关键词 Peanut shell Dietary fiber Drying method functional property Structural property
在线阅读 下载PDF
Construction of Phosphorus-Functionalized Multichannel Carbon Interlayers for Dendrite-Free Metallic Zn Anodes
9
作者 Liang He Qingyin Zhang +6 位作者 He Li Shiping Liu Ting Cheng Ruoxuan Zhang Yujia Wang Peng Zhang Zhiqiang Shi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期95-103,共9页
Zn metal anodes are usually subject to grave dendrite growth during platting/stripping,which dramatically curtails the lifespan of aqueous Zn-ion batteries and capacitors.To address above problems,in our work,a novel ... Zn metal anodes are usually subject to grave dendrite growth during platting/stripping,which dramatically curtails the lifespan of aqueous Zn-ion batteries and capacitors.To address above problems,in our work,a novel phosphorus-functionalized multichannel carbon interlayer was designed and covered on Zn anodes.The results demonstrated that the multichannel structure combined with the three-dimensional meshy skeleton can provide more sufficient space for Zn deposition,thereby effectively inhibiting the growth of zinc dendrites.Meanwhile,theoretical calculations also confirmed that the P-C and P=O functional groups from phosphorus-functionalized multichannel carbon interlayer have the decisive influence in reducing the zinc nucleation potential and depositing uniformly zinc.Concretely,the symmetrical battery assembled with phosphorus-functionalized multichannel carbon interlayer-covered Zn anodes possessed a long lifetime of 3300 h at 2 mA cm^(-2)with 1 mAh cm^(-2).Furthermore,the full cell with activated carbon cathodes exhibited a high specific capacity of 80.5 mAh g^(-1)and outstanding cycling stability without capacity decay after 15000 cycles at a high current density of 5 A g^(-1).The superior electrochemical performance exceeded that of most reported papers.Consequently,our synthesized zincophilic interlayer with the unique structure has superior prospects for application in stabilizing zinc anodes and prolonging the lifespan of batteries. 展开更多
关键词 aqueous Zn-ion supercapacitors multichannel carbon fiber phosphorus functionalized Zn dendrite Zn metal anode
在线阅读 下载PDF
Cotton functional genomics reveals global insight into genome evolution and fiber development 被引量:2
10
作者 Zhiguo Wu Yan Yang +3 位作者 Gai Huang Jing Lin Yuying Xia Yuxian Zhu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第11期511-518,共8页
Due to the economic value of natural textile fiber, cotton has attracted much research attention, which has led to the publication of two diploid genomes and two tetraploid genomes. These big data facilitate functiona... Due to the economic value of natural textile fiber, cotton has attracted much research attention, which has led to the publication of two diploid genomes and two tetraploid genomes. These big data facilitate functional genomic study in cotton, and allow researchers to investigate cotton genome structure, gene expression, and protein function on the global scale using high-throughput methods. In this review, we summarized recent studies of cotton genomes. Population genomic analyses revealed the domestication history of cultivated upland cotton and the roles of transposable elements in cotton genome evolution.Alternative splicing of cotton transcriptomes was evaluated genome-widely. Several important gene families like MYC, NAC, Sus and GhPLDal were systematically identified and classified based on genetic structure and biological function. High-throughput proteomics also unraveled the key functional proteins correlated with fiber development. Functional genomic studies have provided unprecedented insights into global-scale methods for cotton research. 展开更多
关键词 Cotton functional genomics Genome evolution fiber development
原文传递
Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fbers
11
作者 H.M.FEIZABAD M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期543-562,共20页
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar... Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams. 展开更多
关键词 bamboo fiber free vibration buckling analysis functionally graded(FG)beam elastic foundation generalized differential quadrature method(GDQM)
在线阅读 下载PDF
STUDY ON FUNCTIONAL GROUPS OF CARBON FIBER SURFACE
12
作者 房宽峻 戴瑾瑾 王菊生 《Journal of China Textile University(English Edition)》 EI CAS 1994年第2期79-83,共5页
Rayon-based carbon fibers were anodically oxidized in the presence of a variety of electrolytes. The functional groups produced on carbon fiber surface were characterized by Fourier Transform Infrared Spectroscopy (FT... Rayon-based carbon fibers were anodically oxidized in the presence of a variety of electrolytes. The functional groups produced on carbon fiber surface were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Both K Br pellet spectra and ATR difference spectra indicate that carboxyl and phenolic and carbonyl groups were produced. The acidic groups, carboxyl and phenol, were measured by potentiometrie titration with standard solutions of acid and alkali. The results show that the amount of acidic groups is related to the electrolyte used. 展开更多
关键词 carbon fibers anodic oxidation FTIR SURFACE functional GROUPS POTENTIOMETRIC titration.
在线阅读 下载PDF
Functional Investigation of a Cotton Fiber HOX Gene
13
作者 GUAN Xue-ying,SHANGGUAN Xiao-xia,WANG Shui,WANG Ling-jian,CHEN Xiao-ya(National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China) 《棉花学报》 CSCD 北大核心 2008年第S1期53-,共1页
Most of the plant homeodomain-containing proteins play important roles in regulating cell differentiation and organ development,and Arabidopsis GLABRA2(GL2),a member of the class IV homeodomain-Leucine zipper(HD-ZIP) ... Most of the plant homeodomain-containing proteins play important roles in regulating cell differentiation and organ development,and Arabidopsis GLABRA2(GL2),a member of the class IV homeodomain-Leucine zipper(HD-ZIP) proteins,is a trichome and non-root hair cell regulator.We 展开更多
关键词 HOX functional Investigation of a Cotton fiber HOX Gene
在线阅读 下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
14
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization Gas separation
在线阅读 下载PDF
Surface modification of high Cu-loaded activated carbon fiber adsorbent by air plasma
15
作者 Bei Huang Xinyu Yang +3 位作者 Shilin Song Shuangyan Zi Yixing Ma Kai Li 《Journal of Environmental Sciences》 2025年第8期402-414,共13页
The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor... The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor(BET)result showed that the specific surface area of the adsorbent after air plasma modification was almost three times that before modification.X-ray photoelectron spectroscopy(XPS)findings revealed that the amino group was added to the adsorbent's surface,increasing lattice oxygen and chemisorbed oxygen.The adsorbent's large specific surface area,excellent surface active oxygen,and abundance of basic groups facilitate PH_(3)and H_(2)S adsorption and oxidation.The scanning electron microscopy showed that air plasma modification exposed more active components and uniformly dispersed them on the surface of adsorbent,thereby improving the adsorption performance.Activity evaluation results showed that the adsorbent has the best ability to capture PH_(3)and H_(2)S after being modified by air plasma at 4 kV voltage for 10 min.The adsorbent's breakthrough ability at high space velocity(WHSV:60,000 h^(−1))is 190 mg P/g and 146 mg S/g,respectively,which is 74%and 60%greater than that before modification.This is a great improvement over previous studies.In addition,the possible mechanism of adsorbent deactivation was proposed. 展开更多
关键词 Air-plasma Activated carbon fiber Specific surface area functional group
原文传递
Differential plasticity of excitatory and inhibitory reticulospinal fibers after spinal cord injury:Implication for recovery
16
作者 Rozaria Jeleva Carmen Denecke Muhr +1 位作者 Alina P.Liebisch Florence M.Bareyre 《Neural Regeneration Research》 2026年第5期2011-2020,共10页
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ... The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury. 展开更多
关键词 GABAergic(vGat)fibers gait features glutamatergic(vGlut2)fibers PLASTICITY recovery of function reticulospinal tract spinal cord injury
暂未订购
Proline‑driven metabolic reprogramming promotes skeletal muscle hypertrophy and oxidative myofiber specification in porcine offspring:a stage‑optimized maternal nutritional intervention
17
作者 Jun Huang Kaidi Ma +6 位作者 Junyi Wu Shuangbo Huang Zihao Huang Yujiao Chen Shijian Zhou Hefeng Luo Chengquan Tan 《Journal of Animal Science and Biotechnology》 2025年第5期2446-2457,共12页
Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undef... Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undefined.This study systematically evaluated the temporal-specific impacts of dietary Pro supplementation during critical phases of fetal myogenesis(encompassing primary myofiber formation and secondary myofiber hyperplasia)on offspring muscle development.A total of 120 sows with similar farrowing schedules were assigned to three groups:CON(basal diet),ST-Pro(0.5%Pro supplementation during secondary myofiber formation period,from d 60 gestation to farrowing),LT-Pro(0.5%Pro supplementation spanning primary and secondary myofiber formation period:from d 20 gestation to farrowing).Results LT-Pro group significantly increased the longissimus dorsi(LD)muscle mass per unit body weight in newborn piglets compared to CON group(P<0.05),while no such effect was observed in the ST-Pro group.Metabolomic profiling revealed elevated Pro,lysine,and tryptophan levels in the LD muscle of LT-Pro group piglets,accompanied by reduced branched-chain amino acids(BCAAs;leucine,isoleucine,and valine)in both serum and muscle(P<0.05).Histological analysis demonstrated a 45.74%increase in myofiber cross-sectional area in the LT-Pro group(P<0.05).At the molecular level,LT-Pro group piglets exhibited upregulated mRNA expression levels of myogenic regulatory genes(MYOD1,MYF6)and the cell cycle accelerator CCND1(P<0.05),coupled with activation of the STAT3 signaling pathway(phosphorylated STAT3 protein increased by 2.53-fold,P<0.01).Furthermore,Pro supplementation enhanced oxidative metabolism,evidenced by elevated mitochondrial biogenesis markers(the mRNA expression levels of PPARGC1A,OPA1,and SQSTM1)and a 61.58%increase in succinate dehydrogenase activity(P<0.05).Notably,LT-Pro group piglets showed a selective shift toward slow-twitch oxidative fibers,with both MyHC1 mRNA and protein expression levels significantly upregulated(P<0.05),while the mRNA expression levels of MyHCIIb showed no significant change.Conclusions This study identified the primary fiber formation period as a critical window.Supplementation with Pro during G20–114 reprogrammed offspring skeletal muscle development through STAT3-CCND1-mediated myoblast proliferation,enhanced mitochondrial bioenergetics,and oxidative fiber specification.However,no such effects were observed during G60–114.These findings propose maternal Pro intervention as a novel strategy to enhance muscle yield and metabolic efficiency in swine production,with potential applications for improving meat quality traits linked to oxidative muscle phenotypes. 展开更多
关键词 Mitochondrial function Oxidative muscle fibers PROLINE Skeletal muscle development STAT3 signaling pathway
在线阅读 下载PDF
Thermally Conductive Ti_(3)C_(2)T_(x)Fibers with Superior Electrical Conductivity
18
作者 Yuxiao Zhou Yali Zhang +5 位作者 Yuheng Pang Hua Guo Yongqiang Guo Mukun Li Xuetao Shi Junwei Gu 《Nano-Micro Letters》 2025年第10期197-210,共14页
High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions b... High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti_(3)C_(2)T_(x)nanosheets within fibers,which restricts their properties.Herein,a versatile strategy is proposed to construct wet-spun Ti_(3)C_(2)T_(x)fibers,in which trace amounts of borate form strong interlayer crosslinking between Ti_(3)C_(2)T_(x)nanosheets to significantly enhance interactions as supported by density functional theory calculations,thereby reducing interlayer spacing,diminishing microscopic voids and promoting orientation of the nanosheets.The resultant Ti_(3)C_(2)T_(x)fibers exhibit exceptional electrical conductivity of 7781 S cm^(-1)and mechanical properties,including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa.Notably,employing equilibrium molecular dynamics simulations,finite element analysis,and cross-wire geometry method,it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti_(3)C_(2)T_(x)fibers to 13 W m^(-1)K^(-1),marking the first systematic study on thermal conductivity of Ti_(3)C_(2)T_(x)fibers.The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti_(3)C_(2)T_(x)fibers with high electrical conductivity for smart textiles,but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers. 展开更多
关键词 Thermally conductive Ti_(3)C_(2)T_(x)fibers Interlayer crosslinking High electrical conductivity Density functional theory simulation Equilibrium molecular dynamics simulation
在线阅读 下载PDF
Multi-functional optical fiber sensor system based on a dense wavelength division multiplexer
19
作者 Yue-Xin Yin Zhifa Wu +4 位作者 Siwen Sun Liang Tian Xibin Wang Yuanda Wu Daming Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期222-224,共3页
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain... We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors. 展开更多
关键词 DENSE wavelength DIVISION multiplexer(DWDM) planar LIGHTWAVE circuit multi-functional SENSOR optical fiber SENSOR system
原文传递
Palladium nanoparticles supported on amine-functionalized glass fiber mat for fixed-bed reactors on the effective removal of hexavalent chromium by catalytic reduction
20
作者 Yu Gao Wuzhu Sun +1 位作者 Weiyi Yang Qi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第6期961-968,共8页
Palladium nanoparticles were deposited on the amine-grafted glass fiber mat (GFM-NH2) catalyst support by a conventional impregnation process followed by the borohydride reduction in aqueous solution at room tempera... Palladium nanoparticles were deposited on the amine-grafted glass fiber mat (GFM-NH2) catalyst support by a conventional impregnation process followed by the borohydride reduction in aqueous solution at room temperature to create the designed Pd/GFM-NH2 catalyst. By the use of large size glass fiber mat without nano/mesopores as the catalyst support, the internal mass transfer limitations due to the existence of nano/mesopores on the catalyst support were eliminated and the Pd/GFM-NH2 catalyst could be easily separated from treated water due to the large size of the catalyst support. Batch experiments demonstrate its good catalytic reduction performance of Cr(VI) with formic acid as the reducing agent. It also demonstrated an efficient Cr(VI) removal and stability in a lab-prepared, packed fixed-bed tube reactor for the continuous treatment of Cr(VI)-containing water. Thus, it has a good potential for the catalytic reduction of Cr(VI) in the water treatment practice. 展开更多
关键词 Palladium nanoparticle Amine-functionalized glass fiber mat Fixed-bed reactor Hexavalent chromium Catalytic reduction
原文传递
上一页 1 2 94 下一页 到第
使用帮助 返回顶部