期刊文献+
共找到67,106篇文章
< 1 2 250 >
每页显示 20 50 100
3D dynamic numerical modeling on vibration mitigation efficiency of open trench with horizontal hollow pipes
1
作者 Hu Zhonghua Chen Qingsheng +2 位作者 Xu Changjie Sudip Basack Luo Wenjun 《Earthquake Engineering and Engineering Vibration》 2025年第3期795-809,共15页
Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vib... Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vibrations,its primary disadvantage is its instability and lack of vibration isolation effectiveness apart from the stability of the trenches.To address these concerns,a new technique has been developed by the authors,which includes filling up these trenches with a group of hollow pipes in a specific pattern.This is a novel method for reducing ground vibrations by burying hollow pipes horizontally.Through the use of three-dimensional(3D)finite-element modeling,the effectiveness of such hollow pipes in decreasing ground vibrations generated by harmonic stress excitation on the ground surface was investigated.Compared to open trench and rows of piles,these pipe assemblages have been shown to be very successful in reducing ground vibration transmission while also addressing issues of instability and enhancing vibration isolation efficiency.A 3D dynamic numerical model is constructed in PLAXIS3D,and the findings are validated against earlier publications.Next,a comparison research study is conducted,with its focus between horizontal hollow and vertical pipe piles.Finally,a detailed parametric study is carried out to establish the effect of each of the wave barrier’s architectural,material,and loading elements on its vibration isolation effectiveness.Critical parameters are discovered and tuned to maximize the efficiency of this new technique. 展开更多
关键词 ground vibrations hollow pipe vertical pipe pile vibration isolation
在线阅读 下载PDF
Machine learning-based design strategy for weak vibration pipes conveying fluid
2
作者 Tianchang DENG Hu DING +1 位作者 SKITIPORNCHAI Jie YANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1215-1236,共22页
Multi-constrained pipes conveying fluid,such as aircraft hydraulic control pipes,are susceptible to resonance fatigue in harsh vibration environments,which may lead to system failure and even catastrophic accidents.In... Multi-constrained pipes conveying fluid,such as aircraft hydraulic control pipes,are susceptible to resonance fatigue in harsh vibration environments,which may lead to system failure and even catastrophic accidents.In this study,a machine learning(ML)-assisted weak vibration design method under harsh environmental excitations is proposed.The dynamic model of a typical pipe is developed using the absolute nodal coordinate formulation(ANCF)to determine its vibrational characteristics.With the harsh vibration environments as the preserved frequency band(PFB),the safety design is defined by comparing the natural frequency with the PFB.By analyzing the safety design of pipes with different constraint parameters,the dataset of the absolute safety length and the absolute resonance length of the pipe is obtained.This dataset is then utilized to develop genetic programming(GP)algorithm-based ML models capable of producing explicit mathematical expressions of the pipe's absolute safety length and absolute resonance length with the location,stiffness,and total number of retaining clips as design variables.The proposed ML models effectively bridge the dataset with the prediction results.Thus,the ML model is utilized to stagger the natural frequency,and the PFB is utilized to achieve the weak vibration design.The findings of the present study provide valuable insights into the practical application of weak vibration design. 展开更多
关键词 pipe conveying fluid machine learning(ML) pipe design strategy RESONANCE genetic programming(GP) inverse design preserved frequency band(PFB)
在线阅读 下载PDF
Numerical Simulation of Turbulent Heat Transfer in Concentric Annular Pipes
3
作者 Jinping Xu Zhiyun Wang Mo Yang 《Frontiers in Heat and Mass Transfer》 2025年第4期1151-1163,共13页
In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Ditt... In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Dittus-Boelter equation for circular pipes make it unsuitable for the complex flow induced by the geometry and heat transfer coupling effects in annular pipes.This prevents it from accurately predicting the turbulent heat transfer in concentric annular pipes.This paper used realizableκ–εand low Reynolds number models to conduct numerical simulations of turbulent convective heat transfer in concentric annular pipes and circular pipes.The results indicated that the local heat transfer coefficient and Nusselt number of the inner wall surface of the annular pipe were both higher than those of the outer wall surface.The Darcy resistance coefficient decreased upon increasing the Reynolds number and increased with the inner diameter-to-outer diameter ratio.When using the equivalent diameter as the characteristic scale,the turbulent heat transfer correlation obtained from circular pipes produced significant errors when used to approximate the turbulent convective heat transfer in concentric annular pipes.This error was greater for the inner wall surface,especially when the inner and outer diameters were relatively small,as the Nusselt number error on the inner wall surface reached 60.62%.The error of the Nusselt number on the outer wall surface reached 19.51%. 展开更多
关键词 Turbulent flow realizableκ–ε concentric annular pipe Dittus-Boelter formula
在线阅读 下载PDF
Experimental and numerical study on attenuation of shock waves in ventilation pipes
4
作者 Wenjun Yu Shuxin Deng +5 位作者 Shengyun Chen Bingbing Yu Dongyan Jin Zhangjun Wu Yaguang Sui Huajie Wu 《Defence Technology(防务技术)》 2025年第4期156-168,共13页
With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ... With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications. 展开更多
关键词 Hock waves Ventilation pipes Numerical modelling Explosion mechanics
在线阅读 下载PDF
Laser welding of molybdenum socket joint for ultra-high-temperature heat pipes based on niobium alloying
5
作者 Jia-xuan ZHAO Hong-da ZHANG +3 位作者 Lin-jie ZHANG Xiang-dong DING Yuan-jun SUN Guang SUN 《Transactions of Nonferrous Metals Society of China》 2025年第2期511-524,共14页
The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased f... The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased from HV 194.7 to HV 283.3.Additionally,Nb can react with O to form dispersed Nb_(2)O_(5) along grain boundaries,impeding grain boundary migration and dislocation movement while reducing the content of volatile Mo oxide along these boundaries.The incorporation of Nb in FZ partially inhibits pore defects and enhances joint load-bearing capacity.In comparison to the laser-welded joints without adding Nb(LW),the tensile strength of the laser-welded joints with Nb alloying(LW-Nb)was significantly improved by approximately 69%from 327.5 to 551.7 MPa.Furthermore,the fracture mechanism of the joints transitioned from intergranular fracture to transgranular fracture. 展开更多
关键词 laser welding MOLYBDENUM heat pipe niobium alloying MICROSTRUCTURE performance
在线阅读 下载PDF
Non-planar vibration characteristics and buckling behaviors of two fluid-conveying pipes coupled with an intermediate spring
6
作者 Dali WANG Tianli JIANG +1 位作者 Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1829-1850,共22页
This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted ... This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted to evaluate the effects of spring parameters on the non-planar vibration characteristics and buckling behaviors of the coupled system. The nonlinear governing equations are derived with Hamilton's principle,subsequently discretized through Galerkin's method, and finally numerically solved by the Runge-Kutta algorithm. Based on the linearized equations, an eigenvalue analysis is performed to obtain the coupled frequencies, modal shapes, and critical flow velocities for buckling instability. Quantitative assessments further elucidate the effects of the spring position and stiffness coefficient on the coupled frequencies and critical flow velocities.Nonlinear dynamic analyses reveal the evolution of buckling patterns and bifurcation behaviors between the lateral displacements of the two pipes and the flow velocity. Numerical results indicate that the intermediate spring increases the susceptibility to buckling instability in the out-of-plane direction compared with the in-plane direction. Furthermore, synchronized lateral displacements emerge in both pipes when the flow velocity of one pipe exceeds the critical threshold. This work is expected to provide a theoretical foundation for the stability assessment and vibration analysis in coupled fluid-conveying pipe systems. 展开更多
关键词 coupled fluid-conveying pipe system intermediate spring non-planar vibration buckling behavior
在线阅读 下载PDF
Nonlinear 1:1 internal resonance in graphene platelet-reinforced fluid-conveying pipes
7
作者 Guilin SHE Yujie HE 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1903-1920,I0020-I0024,共23页
This study investigates the nonlinear dynamics of geometrically imperfect graphene platelet-reinforced metal foam(GPLRMF)fluid-conveying pipes under the 1:1 internal resonance condition.With simply supported boundary ... This study investigates the nonlinear dynamics of geometrically imperfect graphene platelet-reinforced metal foam(GPLRMF)fluid-conveying pipes under the 1:1 internal resonance condition.With simply supported boundary conditions,the system is subject to the combined external lateral loads and internal pulsating fluid excitations.The nonlinear dynamic model is established with the Euler-Lagrange equations and then systematically discretized via the Galerkin method.The multi-scale analysis reveals how material properties and geometric imperfections influence the internal resonance.Particular emphasis is placed on elucidating,through the modal energy analysis,the energy exchange mechanisms between the first two vibration modes. 展开更多
关键词 fluid-conveying pipe 1:1 internal resonance pulsating fluid geometric imperfection
在线阅读 下载PDF
Nonlinear forced vibration of fluid-conveying layered pipes with weak interface and one end movable
8
作者 Zhoumi WANG Qingchun MENG 《Chinese Journal of Aeronautics》 2025年第5期287-295,共9页
Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonli... Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonlinear forced resonance of fluid-conveying layered pipes with a weak interface and a movable boundary under the external excitation is studied. The pipe is simply supported at both ends, with one end subject to a viscoelastic boundary constraint described by KelvinVoigt model. The weak interface in the pipe is considered in the refined displacement field of the layered pipe employing the interfacial cohesive law. The governing equations are derived by Hamilton's variational principle. Geometric nonlinearities including nonlinear curvature, longitudinal inertia nonlinearity and nonlinear constraint force are comprehensively considered during the theoretical derivation. Amplitude-frequency bifurcation diagrams are obtained utilizing a perturbation-Incremental Harmonic Balance Method(IHBM). Results show that interfacial damage and viscoelastic constraints from boundary and foundation have an important influence on the linear and nonlinear dynamic behavior of the system. 展开更多
关键词 Forced vibration Fluid-conveying pipe Weak interface Viscoelastic constraint Inertia nonlinearity Curvature nonlinearity
原文传递
A Method for Small Target Detection and Counting of the End of Drill Pipes Based on the Improved YOLO11n
9
作者 Miao Li Xiaojun Li Mingyang Zhao 《Computers, Materials & Continua》 2025年第10期1917-1936,共20页
Aiming at problems such as large errors and low efficiency in manual counting of drill pipes during drilling depth measurement,an intelligent detection and counting method for the small targets at the end of drill pip... Aiming at problems such as large errors and low efficiency in manual counting of drill pipes during drilling depth measurement,an intelligent detection and counting method for the small targets at the end of drill pipes based on the improved YOLO11n is proposed.This method realizes the high-precision detection of targets at drill pipe ends in the image by optimizing the target detection model,and combines a post-processing correction mechanism to improve the drill pipe counting accuracy.In order to alleviate the low-precision problem of YOLO11n algorithm for small target recognition in the complex underground background,the YOLO11n algorithm is improved.First,the key module C3k2 in the backbone network was improved,and Poly Kernel Inception(PKI)Block was introduced to replace Bottleneck in it to fully integrate the target context information and the model’s capability of feature extraction;Second,within the model’s neck network,a new feature fusion pyramid ISOP(Improved Small Object Pyramid)is proposed,SPDConv is introduced to strengthen the P2 feature,and CSP and OmniKernel are combined to integrate multi-scale features;Finally,the default loss function is substituted with Powerful-IoU(PIoU)to solve the anchor box expansion problem.On the self-built dataset,experimental verification was conducted.The findings showed that the Recall rose by 6.4%,mAP@0.5 increased by 4.5%,and mAP@0.5:0.95 improved by 6%compared with the baseline model,effectively solving the issues of false detection and missed detection problems in small target detection task.Meanwhile,we conducted counting tests on drilling videos from 5 different scenarios,achieving an average accuracy of 97.3%,which meets the accuracy needs for drill pipe recognition and counting in coal mine drilling sites.The research findings offer theoretical basis and technical backing for promoting the intelligent development of coal mine gas extraction drilling sites. 展开更多
关键词 YOLO11n drill pipe counting small target PKI Block PIoU loss function
在线阅读 下载PDF
Introducing and analyzing a periodic pipe-in-pipe model for broadband ultra-low-frequency vibration reduction in fluid-conveying pipes
10
作者 Mohammad Hajhosseini 《Acta Mechanica Sinica》 2025年第3期170-180,共11页
A new model of periodic structure is proposed and analyzed.This structure is composed of an inner fluid-conveying pipe with periodic material arrangement carrying periodic arrays of outer cantilever pipes.The generali... A new model of periodic structure is proposed and analyzed.This structure is composed of an inner fluid-conveying pipe with periodic material arrangement carrying periodic arrays of outer cantilever pipes.The generalized differential quadrature rule(GDQR)method combined with the Bloch theorem is used to calculate the vibration band gaps of the structure.Results are verified by the forced vibration responses obtained using the GDQR method.Results indicate that the first two band gaps of the fluid-conveying pipe with periodic material arrangement can get close to each other and move to low frequency regions by changing the length of cantilever pipes.For high fluid velocity values in which the first band gap starts from zero frequency,since the second band is very close to the first band,this periodic structure can be used for vibration reduction over a wide band gap starting from zero frequency.Based on these results,it can be concluded that instead of increasing the total size of the periodic structure,these periodic arrays of cantilever pipes can be implemented to create a wide ultra-low-frequency band gap.Finally,verification of the GDQR method shows that it can be used as a precise numerical method for vibration analysis of the structures such as fluid-conveying pipes and moving belts. 展开更多
关键词 Fluid-conveying pipe Vibration band gap Ultra-low-frequency band gap Close band gaps GDQR method
原文传递
A Numerical Study on Erosion and Wear Mechanisms in Variable Diameter Bend Pipes
11
作者 Li Wang Haipeng Mu +1 位作者 Jiming Zhu Zhongchang Wang 《Fluid Dynamics & Materials Processing》 2025年第4期989-1005,共17页
To elucidate the relationship between pipeline erosion and wear during slurry transportation,this study considers three key influencing parameters,namely,the ratio of inlet to outlet pipe diameter,the length of the va... To elucidate the relationship between pipeline erosion and wear during slurry transportation,this study considers three key influencing parameters,namely,the ratio of inlet to outlet pipe diameter,the length of the variable diameter section,and the roughness of the pipe wall.The impact of these factors on pipeline erosion and wear is analyzed using a single-factor analysis approach.In particular,the Fluent software is employed to conduct the required numerical simulations for variable diameter elbows of varying morphologies.The results indicate that as the inlet to outlet diameter ratio increases,the wear on the pipe inlet and the outer wall of the elbow becomes increasingly pronounced.Notably,when the diameter ratio exceeds 0.8,there is a significant escalation in wear on both the inner and outer elbow walls.Initially,the maximum erosion rate decreases sharply with increasing diameter ratio before a stable condition is attained.Erosion wear in the variable diameter section exhibits a distinct layered distribution pattern.In this region,the wear range for a 40 mm length of the pipe body is relatively small;however,once this length exceeds 40 mm,the wear range expands,ultimately covering the entire pipe section.The length of the variable diameter section significantly influences the maximum erosion rate of the pipeline,with sections shorter than 80 mm experiencing the most severe effects,and showing an exponential decline in erosion rate.As the wall roughness gradually increases,the wear area on both cheeks of the bend section rapidly expands and tends to deepen further.When the roughness reaches 4 mm,the pipeline wear experiences a dramatic shift,resulting in extensive“spot-like”wear patterns emerging at the bottom and sides of the horizontal flow section,which previously exhibited no wear. 展开更多
关键词 Filling slurry variable diameter bend pipe erosion and wear conveying characteristics influence factor
在线阅读 下载PDF
Modeling and mechanism of vibration reduction of pipes by visco-hyperelastic materials
12
作者 Jie JING Xiaoye MAO +2 位作者 Hu DING Honggang LI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1029-1048,共20页
Pipes have been extensively utilized in the aerospace,maritime,and other engineering sectors.However,the vibrations of pipes can significantly affect the system reliability and even lead to accidents.Visco-hyperelasti... Pipes have been extensively utilized in the aerospace,maritime,and other engineering sectors.However,the vibrations of pipes can significantly affect the system reliability and even lead to accidents.Visco-hyperelastic materials can enhance the dissipative effect,and reduce the vibrations of pipes.However,the mechanism based on the constitutive model for visco-hyperelastic materials is not clear.In this study,the damping effect of a visco-hyperelastic material on the outer surface of a plain steel pipe is investigated.The nonlinear constitutive relation of the visco-hyperelastic material is introduced into the governing equation of the system for the first time.Based on this nonlinear constitutive model,the governing model for the forced vibration analysis of a simply-supported laminated pipe is established.The Galerkin method is used to analyze the effects of the visco-hyperelastic parameters and structural parameters on the natural characteristics of the fluid-conveying pipes.Subsequently,the harmonic balance method(HBM)is used to investigate the forced vibration responses of the pipe.Finally,the differential quadrature element method(DQEM)is used to validate these results.The findings demonstrate that,while the visco-hyperelastic material has a minimal effect on the natural characteristics,it effectively dampens the vibrations in the pipe.This research provides a theoretical foundation for applying vibration damping materials in pipe vibration control. 展开更多
关键词 pipe conveying fluid visco-hyperelastic material harmonic balance method(HBM) vibration damping passive control
在线阅读 下载PDF
Performance Analysis of Natural Gas Polyethylene Pipes Based on the Arrhenius Equation
13
作者 Li Niu Yang Wang +3 位作者 Nan Lin Yaoying Yue Wenbin Fu Elzat Tuhanjiang 《Fluid Dynamics & Materials Processing》 2025年第6期1473-1487,共15页
With the widespread use of polyethylene(PE)materials in gas pipelines,the problem related to the aging of these pipes has attracted increasing attention.Especially under complex environmental conditions involving temp... With the widespread use of polyethylene(PE)materials in gas pipelines,the problem related to the aging of these pipes has attracted increasing attention.Especially under complex environmental conditions involving temperature,humidity,and pressure changes,PE pipes are prone to oxidative degradation,which adversely affects their performance and service life.This study investigates the aging behavior of PE pipes used for gas transport under the combined effects of temperature(ranging from 80℃to 110℃)and pressure(0,0.1,0.2,and 0.3 MPa).By assessing the characteristics and thermal stability of the aged pipes,relevant efforts are provided to explore the performance variations during the aging process and develop methods for evaluating thermal stability.The results indicate that an increase in aging factors,specifically temperature and pressure,significantly reduces theMeltMass Flow Rate(MFR)of polyethylene pipes,suggesting a decline in the material’s flowability during the aging process.Oxidative Induction Time(OIT)tests show that with increasing temperature and pressure,the oxidative induction time of the aged polyethylene pipes progressively shortens,indicating a significant reduction in the material’s oxidative stability.The application of the Arrhenius equation further demonstrates that the aging reaction rate of polyethylene pipes in high-temperature environments is closely related to both temperature and activation energy,thereby laying the foundation of a new approach for the development of an initial model that can reflect the microscopic behavior of polyethylene pipes in aging environments. 展开更多
关键词 Polythene pipes arrhenius equation melt mass flow rate(MFR) oxidative induction time(OIT) thermal stability
在线阅读 下载PDF
基于“PIPE”模式的会展概论专业课程建设和人才培养研究
14
作者 周诗涛 《商展经济》 2025年第14期166-169,共4页
“PIPE”模式的会展概论专业课程建设和人才培养以“小问题—大志向”创新育人思维为连接器,创新设计会展概论专业课程建设方案,通过“课赛训研一体化”的创新实践培养模式,实现创新创业教育与专业内容的深度融合,助力人才培养目标的落... “PIPE”模式的会展概论专业课程建设和人才培养以“小问题—大志向”创新育人思维为连接器,创新设计会展概论专业课程建设方案,通过“课赛训研一体化”的创新实践培养模式,实现创新创业教育与专业内容的深度融合,助力人才培养目标的落实。通过专业课程建设和人才培养,使学生更好地适应社会与区域市场发展需求,为国家实施创新驱动发展战略、促进经济提质增效升级提供更为有力的人才支撑。 展开更多
关键词 会展概论 pipe”模式 专业课程建设 人才培养 综合能力 现代服务业
在线阅读 下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:2
15
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
在线阅读 下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
16
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
在线阅读 下载PDF
Application of Ice Pigging in a Drinking Water Distribution System:Impacts on Pipes and Bulk Water Quality
17
作者 Yujing Huang Zhiwei Chen +4 位作者 Guilin He Yu Shao Shuang Song Feilong Dong Tuqiao Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第9期122-130,共9页
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud... Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations. 展开更多
关键词 Ice pigging pipe cleaning Drinking water distribution system Bacterial community SEDIMENTS
在线阅读 下载PDF
Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes
18
作者 Donghai HAN Qi JIA +4 位作者 Yuanyu GAO Qiduo JIN Xin FANG Jihong WEN Dianlong YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1821-1840,共20页
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me... To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes. 展开更多
关键词 fluid-conveying pipe acoustic metamaterial multi-directional vibration reduction local resonance
在线阅读 下载PDF
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
19
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
在线阅读 下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
20
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部