With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption...With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides.展开更多
To improve the efficiency of oxygen electrolysis,exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution rea...To improve the efficiency of oxygen electrolysis,exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Herein,a series of yolk-shell hollow polyhedrons(YHPs)embedded with NiCoFe ternary alloy and metal oxides,which are named YHP-x(x=1,2,3,4),were reported.By controlled etching multi-layered zeolitic imidazolate frameworks and following pyrolytic integration,YHPs are endowed with mass transfer tunnels,accessible inner active sites,and good electrical conductivity.Due to the synergetic effect of the alloy,metal oxides and the yolk-shell structure,YHP-1 exhibits excellent ORR performance with a half-wave potential of 0.79 V and YHP-2 displays superior OER performance with a low overpotential of 257 mV at 10 mA cm−2.The strategy described in this work can be extended to a number of hollow/yolk-shell electrocatalysts for water splitting and metal–air batteries.展开更多
It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are ...It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost electrocatalysts with low overpotential for both HER and OER.In this paper,we report a NiFe alloy decorated NiCoO2 hollow polyhedron(denoted as Ni Fe–Ni Co O2)by using[NiFe(CN)6]- intercalated NiCo–LDH as precursor.As evidenced by the electrochemical active surface area,the resultant Ni Fe–Ni Co O2 composite shows unique hollow nanostructure,which can not only provide abundant mass transport channels,but also increase the contact area of the NiFe–Ni Co O2 material with the electrolyte.The overpotential(η)demand is 286 mV for OER and 102 mV for HER at the current density of 10 mA/cm2 in an alkaline medium of 1 M KOH for the NiFe/NiCoO2 composite.This work provides a new pathway for preparation of the highly efficient bifunctional electrocatalysts for water splitting.展开更多
Combining suitable microstructure and dielectric-magnetic synergy effect is conducive to achieve lightweight,broadband,and high-efficiency microwave absorbing materials within low filler loading.Herein,porous carbon p...Combining suitable microstructure and dielectric-magnetic synergy effect is conducive to achieve lightweight,broadband,and high-efficiency microwave absorbing materials within low filler loading.Herein,porous carbon polyhedrons coupled with bimetallic CoNi alloys were synthesized by using metalorganic frameworks(MOFs)as a template and subsequent pyrolysis treatment.Electromagnetic analysis indicated that the existence of metal Ni element could influence the wave attenuation capacity effectively,resulting in frequency selective wave absorption performance.Additionally,the pyrolysis temperature was also closely related to wave absorption intensity.The Co_(2)Ni_(1)/C/PVDF composites calcined at 800℃ possessed outstanding wave absorption performance at an ultra-low filler loading of 5 wt%.The minimum reflection loss value achieved-52 dB(10.8 GHz)under the matched thickness of 3 mm.Moreover,the broadest effective absorption bandwidth(RL<-10 dB)reached 6.2 dB(11.8-18 GHz)for Co/C-800/PVDF composites when the thickness turned into 2 mm.The remarkable wave attenuation ability was mainly ascribed to magnetic and dielectric loss,impedance matching as well as porous structure effect.展开更多
Because of their large volume variation and inferior electrical conductivity,Mn_(3)O_(4)-based oxide anode materials have short cyclic lives and poor rate capability,which obstructs their development.In this study,we ...Because of their large volume variation and inferior electrical conductivity,Mn_(3)O_(4)-based oxide anode materials have short cyclic lives and poor rate capability,which obstructs their development.In this study,we successfully prepared a Mn_(3)O_(4)/N-doped honeycomb carbon composite using a smart and facile synthetic method.The Mn_(3)O_(4)nanopolyhedra are grown on N-doped honeycomb carbon,which evidently mitigates the volume change in the charging and discharging processes but also improves the electrochemical reaction kinetics.More importantly,the Mn-O-C bond in the Mn_(3)O_(4)/N-doped honeycomb carbon composite benefits electrochemical reversibility.These features of the Mn_(3)O_(4)/N-doped honeycomb carbon(NHC)composite are responsible for its superior electrochemical performance.When used for Li-ion batteries,the Mn_(3)O_(4)/N-doped honeycomb carbon anode exhibits a high reversible capacity of 598 mAh·g^(−1)after 350 cycles at 1 A·g^(−1).Even at 2 A·g^(−1),the Mn_(3)O_(4)/NHC anode still delivers a high capacity of 472 mAh·g^(−1).This work provides a new prospect for synthesizing and developing manganese-based oxide materials for energy storage.展开更多
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&...The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here,we proposed a multistep ion exchange(cation exchang...In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here,we proposed a multistep ion exchange(cation exchange and anion exchange) strategy to synthesize amorphous Ni-Co-S and β-Co(OH)_(2) hybrid nanomaterials with a hollow polyhedron structures.The synergistic effects of different components and the remarkable superiorities of hollow structure endow Ni-Co-S/Co(OH)_(2) electrode with outstanding electrochemical performance,including ultra-high specific capacity(1440.0 C/g at 1 A/g),superior capacitance retention rate(79.1% retention at 20 A/g) and long operating lifespan(81.4% retention after5000 cycles).Moreover,the corresponding hybrid supercapacitor enjoys a high energy density of 58.4 Wh/kg at the power density of 0.8 kW/kg,and a decent cyclability that the capacitances are maintained at80.8% compared with the initial capacitance.This research presents a high-performance electrode material and provides a promising route for the construction of electrode materials for supercapacitors with both structural and component advantages.展开更多
In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenp...In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenpolyhedron by designing the angles between two adjacent edges that contain an EP.Refinement rules are then formulated with the help of the modified eigenpolyhedron.Numerical experiments show that the method significantly improves the performance of the subdivision surface for non-uniform parameterization.展开更多
Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel...Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.展开更多
Based on the regular polyhedron model of multi-electronic atom combined with the Bohr hypothesis, the following supposition is put forward: the electron momentum multiplied by the inscribed sphere radius of edges of e...Based on the regular polyhedron model of multi-electronic atom combined with the Bohr hypothesis, the following supposition is put forward: the electron momentum multiplied by the inscribed sphere radius of edges of each regular polyhedron is equal to the Planck constant. The relationship between saturation magnetization rates and Planck constants is determined, and the ferromagnetism of atoms is obtained from regular dodecahedron and regular hexahedron. Then, terbium, dysprosium, and holmium saturation magnetization rate are obtained from electronic regular polyhedron configuration. Derivation of matter wave formula is from thermodynamics, avoiding over speed of light.展开更多
The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force struct...The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.展开更多
Co nanostructure tetradecahedron shape like were prepared via a simple solvothermal route.The shape and size of Co nanopolyhedron were tuned by changing the volume composition of the solvents and the synthesis tempera...Co nanostructure tetradecahedron shape like were prepared via a simple solvothermal route.The shape and size of Co nanopolyhedron were tuned by changing the volume composition of the solvents and the synthesis temperature.Phase purity was confirmed by X-ray diffraction(XRD)and crystal size was determined by scanning electron microscopy(SEM).The magnetic hysteresis loops of the polyhedron wareneasured using a SQUID magnetometer at 5 and 300 K.The results show ferromagnetic characteristics with coercivities of 22 and 15 Oe,respectively.展开更多
This note presents two fast polyhedron ray-tracing algorithms that can be applied not only in ray-convex polyhedron intersection, but also in ray-concave polyhedron intersection (Algorithm 2 permits polygons to contai...This note presents two fast polyhedron ray-tracing algorithms that can be applied not only in ray-convex polyhedron intersection, but also in ray-concave polyhedron intersection (Algorithm 2 permits polygons to contain internal loops of not).In the basis of surface trian gulation, Algorithm 1 can accelerate the surface normal vector interpolation by the intersection point's parameters. And besides, Algorithm 2 does not need any pre_procession such as surface triangulation. Moreover, it requires a few memories with more difficult operations such as division, extraction of roots and transcendental functions avoided entirely. Their simplicity and efficiency permit easy software or hardware implementation.展开更多
Porous Cu-based metal-organic compounds have attracted increasing attention for CO_(2) electroreduction due to their well-defined porous structures and abundant metal sites.However,the classical{Cu_(2)}-paddlewheel mo...Porous Cu-based metal-organic compounds have attracted increasing attention for CO_(2) electroreduction due to their well-defined porous structures and abundant metal sites.However,the classical{Cu_(2)}-paddlewheel moieties within these materials often show poor electrochemical stability,leading to structural degradation during CO_(2) electroreduction.Here,we report a strategy to generate stable{Cu(II)Cu(I)}active sites by iodide species in a Cu-based metal-organic polyhedron,Cu-TCBB(TCBB=1,3,5-tris(4′-car boxybiphenyl-2-yl)benzene),to not only promote C_(2)H_(4) production but also clarify the real active sites of{Cu_(2)}-paddlewheel-based materials during CO_(2) electroreduction.Cu-TCBB exhibits a high Faradaic efficiency(FE)of 73.1%towards C_(2)H_(4) at−1.1 V vs.reversible hydrogen electrode(RHE)in 0.1 mol L^(−1) CsI aqueous solution,outperforming all porous metal-organic compounds to date.The presence of iodideinduced{Cu(II)Cu(I)}sites was verified through in situ synchrotron X-ray diffraction and absorption spectroscopy,electron paramagnetic resonance spectroscopy,coupled with modelling,shedding light on the mechanism of CO_(2) electroreduction over unique{Cu(II)Cu(I)}sites.展开更多
Rare-earth supramolecular compounds,such as lanthanide organic polyhedrons(LOPs),are of particular interest due to their many possible applications in various fields.Here we report the first syntheses of Ln_(4)(L^(...Rare-earth supramolecular compounds,such as lanthanide organic polyhedrons(LOPs),are of particular interest due to their many possible applications in various fields.Here we report the first syntheses of Ln_(4)(L^(·+))_(4)-type(Ln,lanthanides;L^(·+),radical ligand)radical-bridged lanthanide organic tetrahedrons by self-assembly of face-capping triphenylamine(TPA)-cored radical ligand with different lanthanide ions.Remarkable coordination enhanced radical stability has been observed,with half-life times(t_(1/2))for L_(1)^(·+),La_(4)(L_(1)^(·+))_(4),Eu_(4)(L_(1)^(·+))_(4),Gd_(4)(L_(1)^(·+))_(4),Tb_(4)(L_(1)^(·+))_(4)and Lu_(4)(L_(1)^(·+))_(4)estimated to be 53 min,482 min,624 min,1248 min,822 min and 347 min,respectively.The TPA radical in Ln_(4)(L_(1)^(·+))_(4)containing paramagnetic Ln ions(Ln=Eu^(Ⅲ),Gd^(Ⅲ)and Tb^(Ⅲ))is observed to be more stable than that in Ln_(4)(L_(1)^(·+))_(4)(Ln=La^(Ⅲ)and Lu^(Ⅲ))constructed by diamagnetic Ln ions.This difference in radical stability is possibly due to the magnetic interactions between paramagnetic Ln^(Ⅲ)ions and L_(1)^(·+)ligands,as confirmed by electron paramagnetic resonance(EPR)in La_(4)(L)_(4)(L=L_(1)and L_(1)^(·+))and Tb_(4)(L)_(4)(L=L_(1)and L_(1)^(·+)),and magnetic susceptibility measurements in Tb·_(4)(L)_(4)(L=L_(1)and L_(1)^(·+)).Our study reveals the coordination of radical ligands with lanthanide ions can improve the radical stability,which is crucial for their applications.展开更多
A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius ...A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.展开更多
The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in dete...The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.展开更多
基金support from the Natural Science Foundation of Jilin Province(Grant No.20200201073JC)the National Natural Science Foundation of China(Grant No.52130101)+1 种基金Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZY01)the Fundamental Research Funds for the Central Universities.
文摘With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides.
基金This study was financially supported by the Program for the National Natural Science Foundation of China(Nos.NSFC-21901221,21671170,21673203 and U1904215)the Natural Science Foundation of Jiangsu Province(No.BK20190870)+1 种基金Changjiang Scholars Program of the Ministry of Education(No.Q2018270)the Top Talent Project of Yangzhou University.
文摘To improve the efficiency of oxygen electrolysis,exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Herein,a series of yolk-shell hollow polyhedrons(YHPs)embedded with NiCoFe ternary alloy and metal oxides,which are named YHP-x(x=1,2,3,4),were reported.By controlled etching multi-layered zeolitic imidazolate frameworks and following pyrolytic integration,YHPs are endowed with mass transfer tunnels,accessible inner active sites,and good electrical conductivity.Due to the synergetic effect of the alloy,metal oxides and the yolk-shell structure,YHP-1 exhibits excellent ORR performance with a half-wave potential of 0.79 V and YHP-2 displays superior OER performance with a low overpotential of 257 mV at 10 mA cm−2.The strategy described in this work can be extended to a number of hollow/yolk-shell electrocatalysts for water splitting and metal–air batteries.
基金supported by the National Nature Science Foundation of China (U1707603, 21625101, 21521005, U1507102)the National Key Research and Development Program of China (2017YFB0307303)+2 种基金the 973 program (Grant No. 2014CB932104)Beijing Natural Science Foundation (2182047)the Fundamental Research Funds for the Central Universities (ZY1709)
文摘It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost electrocatalysts with low overpotential for both HER and OER.In this paper,we report a NiFe alloy decorated NiCoO2 hollow polyhedron(denoted as Ni Fe–Ni Co O2)by using[NiFe(CN)6]- intercalated NiCo–LDH as precursor.As evidenced by the electrochemical active surface area,the resultant Ni Fe–Ni Co O2 composite shows unique hollow nanostructure,which can not only provide abundant mass transport channels,but also increase the contact area of the NiFe–Ni Co O2 material with the electrolyte.The overpotential(η)demand is 286 mV for OER and 102 mV for HER at the current density of 10 mA/cm2 in an alkaline medium of 1 M KOH for the NiFe/NiCoO2 composite.This work provides a new pathway for preparation of the highly efficient bifunctional electrocatalysts for water splitting.
基金supported by the National Natural Science Foundation of China(No.52073010)Beijing Natural Science Foundation(2214069)。
文摘Combining suitable microstructure and dielectric-magnetic synergy effect is conducive to achieve lightweight,broadband,and high-efficiency microwave absorbing materials within low filler loading.Herein,porous carbon polyhedrons coupled with bimetallic CoNi alloys were synthesized by using metalorganic frameworks(MOFs)as a template and subsequent pyrolysis treatment.Electromagnetic analysis indicated that the existence of metal Ni element could influence the wave attenuation capacity effectively,resulting in frequency selective wave absorption performance.Additionally,the pyrolysis temperature was also closely related to wave absorption intensity.The Co_(2)Ni_(1)/C/PVDF composites calcined at 800℃ possessed outstanding wave absorption performance at an ultra-low filler loading of 5 wt%.The minimum reflection loss value achieved-52 dB(10.8 GHz)under the matched thickness of 3 mm.Moreover,the broadest effective absorption bandwidth(RL<-10 dB)reached 6.2 dB(11.8-18 GHz)for Co/C-800/PVDF composites when the thickness turned into 2 mm.The remarkable wave attenuation ability was mainly ascribed to magnetic and dielectric loss,impedance matching as well as porous structure effect.
基金financially supported by the Natural Science Foundation of Henan Province of China(No.222300420252)Nanyang Normal University(Nos.2020ZX013 and 2020ZX014).
文摘Because of their large volume variation and inferior electrical conductivity,Mn_(3)O_(4)-based oxide anode materials have short cyclic lives and poor rate capability,which obstructs their development.In this study,we successfully prepared a Mn_(3)O_(4)/N-doped honeycomb carbon composite using a smart and facile synthetic method.The Mn_(3)O_(4)nanopolyhedra are grown on N-doped honeycomb carbon,which evidently mitigates the volume change in the charging and discharging processes but also improves the electrochemical reaction kinetics.More importantly,the Mn-O-C bond in the Mn_(3)O_(4)/N-doped honeycomb carbon composite benefits electrochemical reversibility.These features of the Mn_(3)O_(4)/N-doped honeycomb carbon(NHC)composite are responsible for its superior electrochemical performance.When used for Li-ion batteries,the Mn_(3)O_(4)/N-doped honeycomb carbon anode exhibits a high reversible capacity of 598 mAh·g^(−1)after 350 cycles at 1 A·g^(−1).Even at 2 A·g^(−1),the Mn_(3)O_(4)/NHC anode still delivers a high capacity of 472 mAh·g^(−1).This work provides a new prospect for synthesizing and developing manganese-based oxide materials for energy storage.
文摘The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
基金supported by the National Natural Science Foundation of China (Nos.51802177,51672109)the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011)。
文摘In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here,we proposed a multistep ion exchange(cation exchange and anion exchange) strategy to synthesize amorphous Ni-Co-S and β-Co(OH)_(2) hybrid nanomaterials with a hollow polyhedron structures.The synergistic effects of different components and the remarkable superiorities of hollow structure endow Ni-Co-S/Co(OH)_(2) electrode with outstanding electrochemical performance,including ultra-high specific capacity(1440.0 C/g at 1 A/g),superior capacitance retention rate(79.1% retention at 20 A/g) and long operating lifespan(81.4% retention after5000 cycles).Moreover,the corresponding hybrid supercapacitor enjoys a high energy density of 58.4 Wh/kg at the power density of 0.8 kW/kg,and a decent cyclability that the capacitances are maintained at80.8% compared with the initial capacitance.This research presents a high-performance electrode material and provides a promising route for the construction of electrode materials for supercapacitors with both structural and component advantages.
基金This work was supported by the National Key R&D Program of China,No.2020YFB1708900Natural Science Foundation of China,Nos.61872328 and 11801126.
文摘In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenpolyhedron by designing the angles between two adjacent edges that contain an EP.Refinement rules are then formulated with the help of the modified eigenpolyhedron.Numerical experiments show that the method significantly improves the performance of the subdivision surface for non-uniform parameterization.
基金supported by the Natural Science Foundation of China under Grant No.61202154 and No.61133009the National Basic Research Project of China under Grant No.2011CB302203+2 种基金Shanghai Pujiang Program under Grant No.13PJ1404500the Science and Technology Commission of Shanghai Municipality Program under Grant No.13511505000the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University under Grant No.A1401
文摘Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.
文摘Based on the regular polyhedron model of multi-electronic atom combined with the Bohr hypothesis, the following supposition is put forward: the electron momentum multiplied by the inscribed sphere radius of edges of each regular polyhedron is equal to the Planck constant. The relationship between saturation magnetization rates and Planck constants is determined, and the ferromagnetism of atoms is obtained from regular dodecahedron and regular hexahedron. Then, terbium, dysprosium, and holmium saturation magnetization rate are obtained from electronic regular polyhedron configuration. Derivation of matter wave formula is from thermodynamics, avoiding over speed of light.
文摘The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.
文摘Co nanostructure tetradecahedron shape like were prepared via a simple solvothermal route.The shape and size of Co nanopolyhedron were tuned by changing the volume composition of the solvents and the synthesis temperature.Phase purity was confirmed by X-ray diffraction(XRD)and crystal size was determined by scanning electron microscopy(SEM).The magnetic hysteresis loops of the polyhedron wareneasured using a SQUID magnetometer at 5 and 300 K.The results show ferromagnetic characteristics with coercivities of 22 and 15 Oe,respectively.
文摘This note presents two fast polyhedron ray-tracing algorithms that can be applied not only in ray-convex polyhedron intersection, but also in ray-concave polyhedron intersection (Algorithm 2 permits polygons to contain internal loops of not).In the basis of surface trian gulation, Algorithm 1 can accelerate the surface normal vector interpolation by the intersection point's parameters. And besides, Algorithm 2 does not need any pre_procession such as surface triangulation. Moreover, it requires a few memories with more difficult operations such as division, extraction of roots and transcendental functions avoided entirely. Their simplicity and efficiency permit easy software or hardware implementation.
基金supported by the National Natural Science Foundation of China(22273108,22233006,22293015,and 22121002)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-050)+3 种基金the ICCAS Carbon Neutral Chemistry Program(CCNC-202403)the National Key Research and Development Program of China(2023YFA1507400)the Innovation Program of the Institute of High Energy Physics of Chinese Academy of Sciences(2023000034)the Natural Science Foundation of Hebei Province(B2024203051)for their financial support of this research.
文摘Porous Cu-based metal-organic compounds have attracted increasing attention for CO_(2) electroreduction due to their well-defined porous structures and abundant metal sites.However,the classical{Cu_(2)}-paddlewheel moieties within these materials often show poor electrochemical stability,leading to structural degradation during CO_(2) electroreduction.Here,we report a strategy to generate stable{Cu(II)Cu(I)}active sites by iodide species in a Cu-based metal-organic polyhedron,Cu-TCBB(TCBB=1,3,5-tris(4′-car boxybiphenyl-2-yl)benzene),to not only promote C_(2)H_(4) production but also clarify the real active sites of{Cu_(2)}-paddlewheel-based materials during CO_(2) electroreduction.Cu-TCBB exhibits a high Faradaic efficiency(FE)of 73.1%towards C_(2)H_(4) at−1.1 V vs.reversible hydrogen electrode(RHE)in 0.1 mol L^(−1) CsI aqueous solution,outperforming all porous metal-organic compounds to date.The presence of iodideinduced{Cu(II)Cu(I)}sites was verified through in situ synchrotron X-ray diffraction and absorption spectroscopy,electron paramagnetic resonance spectroscopy,coupled with modelling,shedding light on the mechanism of CO_(2) electroreduction over unique{Cu(II)Cu(I)}sites.
基金supported by National Key Research and Development Program of China(Nos.2021YFA1500400 and 2022YFA1503300)the National Natural Science Foundation of China(Nos.21825107,21971237,22171264 and 22301301)the Science Foundation of the Fujian Province(No.2021J02016)。
文摘Rare-earth supramolecular compounds,such as lanthanide organic polyhedrons(LOPs),are of particular interest due to their many possible applications in various fields.Here we report the first syntheses of Ln_(4)(L^(·+))_(4)-type(Ln,lanthanides;L^(·+),radical ligand)radical-bridged lanthanide organic tetrahedrons by self-assembly of face-capping triphenylamine(TPA)-cored radical ligand with different lanthanide ions.Remarkable coordination enhanced radical stability has been observed,with half-life times(t_(1/2))for L_(1)^(·+),La_(4)(L_(1)^(·+))_(4),Eu_(4)(L_(1)^(·+))_(4),Gd_(4)(L_(1)^(·+))_(4),Tb_(4)(L_(1)^(·+))_(4)and Lu_(4)(L_(1)^(·+))_(4)estimated to be 53 min,482 min,624 min,1248 min,822 min and 347 min,respectively.The TPA radical in Ln_(4)(L_(1)^(·+))_(4)containing paramagnetic Ln ions(Ln=Eu^(Ⅲ),Gd^(Ⅲ)and Tb^(Ⅲ))is observed to be more stable than that in Ln_(4)(L_(1)^(·+))_(4)(Ln=La^(Ⅲ)and Lu^(Ⅲ))constructed by diamagnetic Ln ions.This difference in radical stability is possibly due to the magnetic interactions between paramagnetic Ln^(Ⅲ)ions and L_(1)^(·+)ligands,as confirmed by electron paramagnetic resonance(EPR)in La_(4)(L)_(4)(L=L_(1)and L_(1)^(·+))and Tb_(4)(L)_(4)(L=L_(1)and L_(1)^(·+)),and magnetic susceptibility measurements in Tb·_(4)(L)_(4)(L=L_(1)and L_(1)^(·+)).Our study reveals the coordination of radical ligands with lanthanide ions can improve the radical stability,which is crucial for their applications.
基金funded by the Russian Science Foundation(No.22–49-02047)。
文摘A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.
基金received financial support from the National Natural Science Foundation of China(Grant No.42030105,No.42204006,No.42274011,No.42304095)Funded by State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM(Grant No.2024-01-01)+2 种基金Open Fund of Hubei Luojia Laboratory(Grant No.230100020,230100019)the China Postdoctoral Science Foundation(Certificate Number:2023M743580)the Key Project of Natural Science Research in Universities of Anhui Province(No.2023AH051634)。
文摘The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.