Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from...Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.展开更多
Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-...Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-efficiency antibacterial coating for metallic substrates.Three pDEMMP-b-pTMAEMA block polymers that bearing identical phosphonate segments(repeat units of 15)but varied cationic segments(repeat units of 8,45,and 70)were precisely prepared.Stable cationic polymer coatings were constructed on TC4 substrates based on the strong covalent binding between phosphonate group and metallic substrate.Robust relationship between the segment chain length of the polymer coating and the antibacterial property endowed to the substrates have been established based on quantitative and qualitative evaluations.Results showed that the antibacterial rate of the modified TC4 surface were 95.8%of S.aureus and 92.9%of E.coli cells attached.Interestingly,unlike the cationic free polymer or cationic hydrogels,the surface anchored cationic polymers do compromise the viability of the attached C2C12 cells but without significant cytotoxicity.In addition,the phosphonate/quate rnary amine block polymers can be easily constructed on titanium,stainless steel,and Ni/Cr alloy with significantly improved antibacterial property,indicating the generality of the block polymer for surface antibacterial modification of bio-metals.展开更多
A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binar...A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system.A living polymerization process was achieved under mild conditions.The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity.Random copolymers could be obtained by copolymerizing this monomer withε-caprolactone.The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers,while the glass transition temperature increased.In addition,the phenyl selenide side group could be further modified to a polyselenonium salt,which resulted in a polymer with good antibacterial properties.The survival rate of E.coli and S.aureus was only 9%with a polymer concentration of 62.5μg/mL.展开更多
Background: Abdominal adhesions develop on damaged peritoneal surfaces and constitute a significant health related problem. Previous animal studies have shown promising anti-adhesive effects when administering the pol...Background: Abdominal adhesions develop on damaged peritoneal surfaces and constitute a significant health related problem. Previous animal studies have shown promising anti-adhesive effects when administering the polycation α-poly-L-lysine (αPL) and the polyanion poly-L-glutamate (PG) together. The objective of the study was to examine the effect of these differently charged polypeptides when administered by spraying and to evaluate any possible effect on fibrinolysis, fibrosis and inflammation. Methods: Rabbits were treated with PLPG after cecal abrasive surgery and analysis from peritoneal biopsies of active tPa/PAI-1 complex and from peritoneal fluid of IL-6 and active TGFb1 at day 0, 1, 4 and 10 were measured after surgery. Histological specimens were analyzed on day 10 regarding inflammation and fibrosis. Peritoneal adhesions were evaluated by adhesion score. All values were compared to the control group (NaCl). Results: PLPG-treated rabbits had a significant diminished adhesion score on day 10 as compared to the control group (p < 0.005). Significantly reduced collagen depositions on the peritoneum were seen in the PLPG group when evaluating the histological specimens (p < 0.05). No significant differences between the experimental and control groups were seen in peritoneal fluid when analyzing for active protein levels. Conclusion: This is the first study to investigate the effect on key parameters in adhesion formation as well as the preventive effect of the PLPG complex on abdominal adhesions in rabbits and also the first study where administration by spraying the polypeptides was used. PLPG was non-toxic in this setting and without significant differences in adhesion formation parameters and a significant reduction in adhesions was observed. This was verified both macroscopically and histologically.展开更多
BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of thre...BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of three novel, chitosan/polycation composite materials for nerve regeneration in cultured mouse Schwann cells and PC12 cells. DESIGN, TIME AND SETTING: The observational, control experiments for nerve tissue engineering were performed at the Department of Biological Sciences and Biotechnology of Tsinghua University from August 2007 to January 2008. MATERIALS: Mouse Schwann cells were isolated from the sciatic nerve of 5–7-day-old BALB/C mice. PC12 cells were purchased from the American Type Culture Collection (ATCC, USA). Chitosan was purchased from Tsingdao Haisheng Co., China. Poly-L-lysine hydrochloride (PLL), polyethyleneimine (PEI) poly-L-ornithine hydrobromide (POR), and S-100 antibody was purchased from Sigma Chemical Co., USA. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Chemical Co., Japan. METHODS: Three chitosan/polycation composite materials for nerve regeneration (PLL-0.25, PEI-0.25, and POR-0.25) were produced by blending chitosan with 0.25% (w/w) poly-L-lysine, polyethyleneimine, and poly-L-ornithine. Pure chitosan was utilized as the control. After 3 days of culture, the morphology of mouse Schwann and PC12 cells cultured on all substrates was observed with an inverted phase contrast microscope. Mouse Schwann cells were stained by immunofluorescence labeling S-100 protein and nuclei, followed by identification with a confocal laser-scanning microscope. The amount of proliferating mouse Schwann and PC12 cells was determined by CCK-8 after 1, 3, and 5 days in culture. The level of PC12 cell differentiation on all substrates was assessed by measuring neurite length at 1, 3, and 5 days after seeding. MAIN OUTCOME MEASURES: Morphology and amount of proliferation of mouse Schwann cells and PC12 cells cultured on chitosan and three polycation-modified materials, as well as amount of differentiation in PC12 cells on these substrates. RESULTS: (1) Morphology of mouse Schwann cells and PC12 cells on all substrates: after 3 days in culture on three different chitosan/polycation composite substrates, Schwann cells were connected to each other and exhibited greater proliferation, compared to the chitosan control. In particular, on PLL-0.25 and POR-0.25 substrates, some cells congregated and nearly reached confluence. The PC12 cells on chitosan substrate, after 3 days in culture, maintained a round shape; few exhibited a bipolar shape and began to form neurite extensions. However, on PLL-0.25 and POR-0.25 substrates, most PC12 cells displayed a bipolar shape with obvious neurite outgrowth, and almost grew as an adherent, spreading monolayer. (2) Proliferation of mouse Schwann cells and PC12 cells on all substrates: on the first day, Schwann cell proliferation on the three composite substrates was significantly greater than the cells on chitosan control (P 〈 0.01). After 3 and 5 days in culture, PLL-0.25 and POR-0.25 substrates resulted in greater cell proliferation when compared to pure chitosan (P 〈 0.01). On the third and fifth day in culture PC12 cell proliferation on PLL-0.25 and POR-0.25 was significantly greater than on chitosan substrate (P 〈 0.01). (3) Differentiation of PC12 cells on all substrates: at all time points, the average neurite length of cells cultured on composite materials was significantly longer than on chitosan control (P 〈 0.05-0.01). Cells on PLL-0.25 exhibited the longest average neurite length at days 3 and 5. CONCLUSION: Mouse Schwann cells and PC12 cells exhibit in vitro biocompatibility with poly-L-lysine-and poly-L-ornithine-modified substrates, which indicates that these substrates could serve as suitable substrates for peripheral nerve regeneration.展开更多
F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase beha...F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolytc system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth ofactin architectures in cell.展开更多
An improved aerobiological virus sampling method was developed based on adding adsorptive nanoparticles in samplers for concentrating viruses in sampling liquid buffers.The objectives of this research were to select e...An improved aerobiological virus sampling method was developed based on adding adsorptive nanoparticles in samplers for concentrating viruses in sampling liquid buffers.The objectives of this research were to select effective adsorptive materials and optimize sampling parameters for increasing recovery of airborne viruses,such as influenza A virus or respiratory syndrome virus(RSV).Three kinds of polycation nanoparticles were evaluated for direct effects on absorption and desorption of influenza virus hemagglutinin and DNA.Chitosan particles showed good performance in absorption and desorption for both influenza virus hemagglutinin and DNA.A subsequent study evaluated the effects of collection buffer,pH and sampling time on the recovery of aerosolized viruses using a method for making direct comparisons of three treatments.The results demonstrated that various components in air-sampling collection buffer,impinger model,and sampling time,independently influenced the recovery of viruses.It was shown that adsorptive samplers with air disperser had the highest levels of sensitivity and repeatability in virus sampling.Both unspecifically adsorptive chitosan particles and specifically adsorptive particles labeled specific antibody to virus significantly enhanced recovery rate of aerosolized viruses.We succeeded to sample low level different pathogen viruses in outdoor environments with the optimized sampling system.展开更多
基金supported by the financial support from the National Research Foundation,Singapore,under its Singapore-China Joint Flagship Project(Clean Energy).
文摘Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.
基金the grant supports from the National Natural Science Foundation of China(No.21504046)the Six Talent Peaks Project in Jiangsu Province(SWYY-060)+1 种基金the Projects of Nanjing Normal University(No.184080H20192184080H10386)。
文摘Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-efficiency antibacterial coating for metallic substrates.Three pDEMMP-b-pTMAEMA block polymers that bearing identical phosphonate segments(repeat units of 15)but varied cationic segments(repeat units of 8,45,and 70)were precisely prepared.Stable cationic polymer coatings were constructed on TC4 substrates based on the strong covalent binding between phosphonate group and metallic substrate.Robust relationship between the segment chain length of the polymer coating and the antibacterial property endowed to the substrates have been established based on quantitative and qualitative evaluations.Results showed that the antibacterial rate of the modified TC4 surface were 95.8%of S.aureus and 92.9%of E.coli cells attached.Interestingly,unlike the cationic free polymer or cationic hydrogels,the surface anchored cationic polymers do compromise the viability of the attached C2C12 cells but without significant cytotoxicity.In addition,the phosphonate/quate rnary amine block polymers can be easily constructed on titanium,stainless steel,and Ni/Cr alloy with significantly improved antibacterial property,indicating the generality of the block polymer for surface antibacterial modification of bio-metals.
基金financially supported by the National Natural Science Foundation of China(No.21871200)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system.A living polymerization process was achieved under mild conditions.The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity.Random copolymers could be obtained by copolymerizing this monomer withε-caprolactone.The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers,while the glass transition temperature increased.In addition,the phenyl selenide side group could be further modified to a polyselenonium salt,which resulted in a polymer with good antibacterial properties.The survival rate of E.coli and S.aureus was only 9%with a polymer concentration of 62.5μg/mL.
基金performed in parts due to grants from Ake Wiberg Foundation,Magnus Bergvall Foundation,Zoegas foundation and Regional hospital funds.
文摘Background: Abdominal adhesions develop on damaged peritoneal surfaces and constitute a significant health related problem. Previous animal studies have shown promising anti-adhesive effects when administering the polycation α-poly-L-lysine (αPL) and the polyanion poly-L-glutamate (PG) together. The objective of the study was to examine the effect of these differently charged polypeptides when administered by spraying and to evaluate any possible effect on fibrinolysis, fibrosis and inflammation. Methods: Rabbits were treated with PLPG after cecal abrasive surgery and analysis from peritoneal biopsies of active tPa/PAI-1 complex and from peritoneal fluid of IL-6 and active TGFb1 at day 0, 1, 4 and 10 were measured after surgery. Histological specimens were analyzed on day 10 regarding inflammation and fibrosis. Peritoneal adhesions were evaluated by adhesion score. All values were compared to the control group (NaCl). Results: PLPG-treated rabbits had a significant diminished adhesion score on day 10 as compared to the control group (p < 0.005). Significantly reduced collagen depositions on the peritoneum were seen in the PLPG group when evaluating the histological specimens (p < 0.05). No significant differences between the experimental and control groups were seen in peritoneal fluid when analyzing for active protein levels. Conclusion: This is the first study to investigate the effect on key parameters in adhesion formation as well as the preventive effect of the PLPG complex on abdominal adhesions in rabbits and also the first study where administration by spraying the polypeptides was used. PLPG was non-toxic in this setting and without significant differences in adhesion formation parameters and a significant reduction in adhesions was observed. This was verified both macroscopically and histologically.
基金National Basic Research Program of China, ("973" Program), No. 2005CB623905Tsinghua-Yue-Yuen Medical Science Fund, Beijing Municipal Science & Technology Commission, No. H060920050430the National Natural Science Foundation of China, No. 30670528, 30700848, 30772443
文摘BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of three novel, chitosan/polycation composite materials for nerve regeneration in cultured mouse Schwann cells and PC12 cells. DESIGN, TIME AND SETTING: The observational, control experiments for nerve tissue engineering were performed at the Department of Biological Sciences and Biotechnology of Tsinghua University from August 2007 to January 2008. MATERIALS: Mouse Schwann cells were isolated from the sciatic nerve of 5–7-day-old BALB/C mice. PC12 cells were purchased from the American Type Culture Collection (ATCC, USA). Chitosan was purchased from Tsingdao Haisheng Co., China. Poly-L-lysine hydrochloride (PLL), polyethyleneimine (PEI) poly-L-ornithine hydrobromide (POR), and S-100 antibody was purchased from Sigma Chemical Co., USA. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Chemical Co., Japan. METHODS: Three chitosan/polycation composite materials for nerve regeneration (PLL-0.25, PEI-0.25, and POR-0.25) were produced by blending chitosan with 0.25% (w/w) poly-L-lysine, polyethyleneimine, and poly-L-ornithine. Pure chitosan was utilized as the control. After 3 days of culture, the morphology of mouse Schwann and PC12 cells cultured on all substrates was observed with an inverted phase contrast microscope. Mouse Schwann cells were stained by immunofluorescence labeling S-100 protein and nuclei, followed by identification with a confocal laser-scanning microscope. The amount of proliferating mouse Schwann and PC12 cells was determined by CCK-8 after 1, 3, and 5 days in culture. The level of PC12 cell differentiation on all substrates was assessed by measuring neurite length at 1, 3, and 5 days after seeding. MAIN OUTCOME MEASURES: Morphology and amount of proliferation of mouse Schwann cells and PC12 cells cultured on chitosan and three polycation-modified materials, as well as amount of differentiation in PC12 cells on these substrates. RESULTS: (1) Morphology of mouse Schwann cells and PC12 cells on all substrates: after 3 days in culture on three different chitosan/polycation composite substrates, Schwann cells were connected to each other and exhibited greater proliferation, compared to the chitosan control. In particular, on PLL-0.25 and POR-0.25 substrates, some cells congregated and nearly reached confluence. The PC12 cells on chitosan substrate, after 3 days in culture, maintained a round shape; few exhibited a bipolar shape and began to form neurite extensions. However, on PLL-0.25 and POR-0.25 substrates, most PC12 cells displayed a bipolar shape with obvious neurite outgrowth, and almost grew as an adherent, spreading monolayer. (2) Proliferation of mouse Schwann cells and PC12 cells on all substrates: on the first day, Schwann cell proliferation on the three composite substrates was significantly greater than the cells on chitosan control (P 〈 0.01). After 3 and 5 days in culture, PLL-0.25 and POR-0.25 substrates resulted in greater cell proliferation when compared to pure chitosan (P 〈 0.01). On the third and fifth day in culture PC12 cell proliferation on PLL-0.25 and POR-0.25 was significantly greater than on chitosan substrate (P 〈 0.01). (3) Differentiation of PC12 cells on all substrates: at all time points, the average neurite length of cells cultured on composite materials was significantly longer than on chitosan control (P 〈 0.05-0.01). Cells on PLL-0.25 exhibited the longest average neurite length at days 3 and 5. CONCLUSION: Mouse Schwann cells and PC12 cells exhibit in vitro biocompatibility with poly-L-lysine-and poly-L-ornithine-modified substrates, which indicates that these substrates could serve as suitable substrates for peripheral nerve regeneration.
基金This research is financially supported by SORST, JST and the Ministry of Education, Science, Sports, and Culture, Japan (Grant-in-Aid of Creative Scientific Research).
文摘F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolytc system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth ofactin architectures in cell.
文摘An improved aerobiological virus sampling method was developed based on adding adsorptive nanoparticles in samplers for concentrating viruses in sampling liquid buffers.The objectives of this research were to select effective adsorptive materials and optimize sampling parameters for increasing recovery of airborne viruses,such as influenza A virus or respiratory syndrome virus(RSV).Three kinds of polycation nanoparticles were evaluated for direct effects on absorption and desorption of influenza virus hemagglutinin and DNA.Chitosan particles showed good performance in absorption and desorption for both influenza virus hemagglutinin and DNA.A subsequent study evaluated the effects of collection buffer,pH and sampling time on the recovery of aerosolized viruses using a method for making direct comparisons of three treatments.The results demonstrated that various components in air-sampling collection buffer,impinger model,and sampling time,independently influenced the recovery of viruses.It was shown that adsorptive samplers with air disperser had the highest levels of sensitivity and repeatability in virus sampling.Both unspecifically adsorptive chitosan particles and specifically adsorptive particles labeled specific antibody to virus significantly enhanced recovery rate of aerosolized viruses.We succeeded to sample low level different pathogen viruses in outdoor environments with the optimized sampling system.