Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in...Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in aqueous solutions and inferior conductivity,which severely hinder their application.Herein,advantages are taken of the“conveyor effect”of conjugated polyaniline to prepare an oxygen defective tungstate-linked polyaniline(O_(d)-WOP)material with chrysanthemum-like microstructure.By virtue of the high electronic conductivity derived from conductive conjugated polyaniline skeleton,unbalanced charge distribution triggered by the defective structure,and reversibly rapid ion(de)intercalation benefited from the open framework with porous chrysanthemum-like microstructure,it delivers outstanding rate capability with a maximum specific capacity of 162.2 mAh g^(-1)and great cycle stability for storing NH_(4)^(+).Additionally,it also adopts a high reversible capacity of 140.4 mAh g^(-1)and outstanding cycling performance to store Ca^(2+).Consequently,the assembled O_(d)-WOP//PTCDI flexible aqueous ammonium ion batteries and calcium ion batteries exhibit superior capacities,energy densities and flexibilities.O_(d)-WOP achieves the NH_(4)^(+) and Ca^(2+)storage capability by interacting with them through hydrogen and ionic bonds,respectively.The deep insight from this work sheds light upon a novel strategy to excavate greater potential of transition metal compounds for aqueous ion batteries.展开更多
Hemoglobin A1c(HbA1c),a key biomarker for long-term glucose regulation,is essential for diagnosing and managing diabetes mellitus.However,conventional HbA1c detection methods often suffer from limited sensitivity,narr...Hemoglobin A1c(HbA1c),a key biomarker for long-term glucose regulation,is essential for diagnosing and managing diabetes mellitus.However,conventional HbA1c detection methods often suffer from limited sensitivity,narrow detection ranges,slow response times,and poor long-term stability.In this study,we developed a high-performance amperometric biosensor for the selective detection of Fructosyl Valine(FV),a model compound for HbA1c,by immobilizing Fructosyl Amino Acid Oxidase(FAAO)onto a glassy carbon electrode modified with electrospun polyaniline/polyindole-Mn_(2)O_(3) nanofibers.Operating at an applied potential of 0.27 V versus Ag/AgCl,the biosensor achieved a rapid detection time of 2 s for FV concentrations up to 50µM,with a signal-to-noise ratio of 3.Under optimized conditions(pH 7.0 and 35℃),the biosensor exhibited a wide linear detection range from 0.1 to 3 mM and a high sensitivity of 38.42µA/mM.Importantly,the sensor retained approximately 70% of its initial activity after 193 days of storage at 4℃,demonstrating excellent long-term stability.These results suggest that the FAAO/polyaniline/polyindole-Mn_(2)O_(3) nanocomposite-based biosensor offers a promising platform for sensitive,rapid,and durable detection of HbA1c,providing significant potential for improving diabetes monitoring and management.展开更多
Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energi...Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energies of thermolysis,E_(a),of the pure NAs and their PANi-CACs were determined using the Kissinger method,and decomposition processes are discussed.Except for the RDX/PANi CACs,all the other CACs show higher E_(a) values for decomposition compared to their pure NA counterparts.For all CACs,relationships are specified between the E_(a) values,on the one hand,and the squares of the detonation velocities,enthalpies of formation,spark energy and impact sensitivities,on the other.The relationships between their low-temperature heats of decomposition,ΔH,from DSC,and their enthalpy of formation,logarithm of impact sensitivity,electric spark energy,as well as detonation energy,are described.The PANi favorably influences the density of the corresponding CACs;surprisingly close linear correlations were found,and explained,between these densities and the E_(a) values.This presence of PANi strongly increased the electrical spark sensitivity of the CACs in comparison to the base NAs.Based on the results obtained,it can be noted in particular the exceptional desensitization of HMX to impact and the increased sensitivity to electrical spark by coating its crystals with polyaniline.展开更多
As a highly promising conductive polymer material,the synthesis method,structure regulation,and performance improvement of polyaniline(PANI)are hot research topics.In this work,the radiation-induced polymerization of ...As a highly promising conductive polymer material,the synthesis method,structure regulation,and performance improvement of polyaniline(PANI)are hot research topics.In this work,the radiation-induced polymerization of aniline in HNO_(3)solution was successfully achieved at room temperature without the use of chemical oxidants.Through the analysis of the radiation chemical reactions of inorganic acids and nitrate salt solutions,the characterization of the intermediate free radicals in the irradiated systems,and the influence of the pH of the solutions on the polymerization activity and product morphologies,the radiation-induced polymerization mechanism of aniline is discussed in detail and proposed.Only at a condition of[HNO_(3)]>[aniline],i.e.,pH<2.5,PANI can be successfully obtained underγ-ray radiation.The polymerization begins with the oxidation of aniline cations to aniline cation radicals by·NO_(3)generated by radiolysis reactions,and undergoes repeated three steps of monomer free radical recombination,deprotonation,and oxidation reaction of·NO_(3),thus forming a PANI macromolecule.In addition to the polymerization reaction,the aniline units are protonated and oxidized because of the strongly acidity and oxidation of the reaction system under γ-ray irradiation,which means that the molecular chain structure of the radiation-synthesized PANI can be regulated by pH,nitrate concentration,and irradiation conditions.Radiation-synthesized PANI has a moderate protonation and oxidation state,which can be used for the preparation of PANI supercapacitors with better electrochemical properties than those prepared by chemical oxidation under the same conditions.This work presents a new radiation-synthesis method and polymerization mechanism of PANI,which not only expands the application of radiation technique in the field of polymer synthesis,but also provides a new idea for the structural regulation and electrochemical property optimization of PANI.展开更多
Polyaniline(PANi)hydrogels have a wide range of applications in artificial skin,flexible robotics,and movement monitoring.Nevertheless,limited by the modulus mismatch between rigid PANi and the soft hydrogel matrix,th...Polyaniline(PANi)hydrogels have a wide range of applications in artificial skin,flexible robotics,and movement monitoring.Nevertheless,limited by the modulus mismatch between rigid PANi and the soft hydrogel matrix,the high strength and toughness of the PANi hydrogel are mutually exclusive.Although the introduction of sacrificial bonds into the hydrogel network can alleviate this contradiction to a certain extent,it always causes pronounced energy hysteresis during hydrogel deformation.Inspired by the energy storage and release of macroscopic springs,in this work,we propose a molecular entanglement approach for the fabrication of PANi hydrogels featuring high toughness and low hysteresis,where flexible poly(ethylene glycol)(PEG)is entangled with chemically cross-linked poly(acrylic acid)(PAA)as a hydrogel matrix,and rigid PANi as a conductive filler.The resultant PAA/PEG/PANi hydrogel exhibited high mechanical properties(fracture strength of 0.75 MPa and toughness of 4.81 MJ·m^(-3))and a low energy dissipation ratio(28.2%when stretching to 300%).Moreover,the PAA/PEG/PANi hydrogel possesses a good electrical response to external forces and can be employed as a strain sensor to monitor human joint movements by producing specific electrical signals.This work provides a straightforward strategy for preparing tough conductive PANi hydrogels with low hysteresis,showing potential for the development of healthcare devices.展开更多
Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion stora...Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion storage due to the properties of its excellent conductivity and inherent theoretical capacity.However,the poor cycling stability and low loadings of PANI limit its application in energy storage.In this study,PANI-x electrodes with high mass loadings are successfully prepared by the electrodeposition method for reversible AlCl_(2)^(+)storage.Among them,the PANI-2 electrode possesses the highest areal capacity(0.59 and 0.51 mAh cm^(−2)at the current density of 0.5 and 10 mA cm^(−2))and excellent cycling stability in saturated AlCl3.Ex situ N 1s fitting spectra of PANI-2 and molecular dynamics simulations of 1 M,3 M,and saturated AlCl_(3)electrolytes demonstrate that PANI can achieve reversible redox reactions in saturated AlCl3,thereby achieving its excellent stability.Density functional theory calculations and ex situ spectra characterizations of PANI-2 demonstrate the insertion/de-insertion mechanism in the form of AlCl_(2)^(+)ions.In conclusion,PANI-2|Saturated AlCl_(3)|EG(exfoliated graphite foil)full cell is assembled successfully.This work provides promising guidance for the preparation of high-loading electrodes for AIBs.展开更多
The synthesis of chiral polyaniline (PANI) induced by modified hemoglobin (Hb) was pro- foundly explored for the first time. Results revealed that after being separated, inactivated or immobilized, Hb can still in...The synthesis of chiral polyaniline (PANI) induced by modified hemoglobin (Hb) was pro- foundly explored for the first time. Results revealed that after being separated, inactivated or immobilized, Hb can still induce the formation of chiral PANI successfully, suggesting that Hb can be used as the chiral inducers regardless of harsh reaction conditions. By examining the properties of PANI induced by modified Hb, it was found that Hb(inactivated)-PANI possessed excellent chirality, stability, and crystalline structure. The globin separated from Hb was demonstrated to have the ability of inducing the production of chiral PANI whereas the hematin from Hb had no capacity to direct enantio specificity for the PANI chains. Results indicated that Hb(immobilized)-PANI exhibited poor yield, doping state, and crys- talline structure, indicating that the immobilization of Hb by entrapment was not beneficial to the polymerization reaction. Results also showed that the structure of Hb may have significant effects on the morphologies of chiral PANI.展开更多
A clay-like conductive material comprising polyaniline(PANI)-acetylene black particles is fabricated as a hole conductor for dye sensitized solar cell(DSSC).The results show that the introduction of acetylene blac...A clay-like conductive material comprising polyaniline(PANI)-acetylene black particles is fabricated as a hole conductor for dye sensitized solar cell(DSSC).The results show that the introduction of acetylene black into the polymer electrolyte improves the photovoltaic behavior of solid-state DSSC,owing to the increase of the hole mobility of PANI electrolyte,the improvement of the wetting quality of the composite electrolyte,and the reinforcement of interface contact between electrode and the electrolyte.Finally,the overall energy conversion efficiency of DSSC with PANI-50%(in weight)acetylene black electrolyte is 48% of that of liquid DSSC.Therefore,the PANI-acetylene black composition is a credible alternative to hole conductor in application of solid DSSC.展开更多
Palladium nanoparticles supported on cross-linked polyaniline with bulky phosphorus ligands were developed.These catalysts showed high efficiency in the Suzuki-Miyaura reaction of aryl chlorides and bromides with phen...Palladium nanoparticles supported on cross-linked polyaniline with bulky phosphorus ligands were developed.These catalysts showed high efficiency in the Suzuki-Miyaura reaction of aryl chlorides and bromides with phenylboronic acids.Aryl chlorides and bromides with functional groups,such as CN,MeO,CHO,MeCO and NO_2,were converted to the corresponding biphenyls in high yields with catalyst loading.Additionally,the catalysts combined high activity with good reusability;they could be used at least five times for the Suzuki-Miyaura coupling reaction.展开更多
The Fe3+/Fe2+ redox electrolyte for use in polyaniline/tin oxide (PANI/SnO2)supercapacitors was reported. The influences of redox electrolyte based on different Fe3+/Fe2+ ion pair concentrations in 1 mol/LH2SO4 ...The Fe3+/Fe2+ redox electrolyte for use in polyaniline/tin oxide (PANI/SnO2)supercapacitors was reported. The influences of redox electrolyte based on different Fe3+/Fe2+ ion pair concentrations in 1 mol/LH2SO4 solution on the pseudocapacitive behaviors of PANI/SnO2 supercapacitor were investigated. The electrochemical properties of the supercapacitor were studied by cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. It is found that the performance of the supercapacitor is the best when the Fe3+/Fe2+ concentrationis 0.4 mol/L and its initial specific capacitance is 1172 F/g at an applied current density of 1 A/g. The long-term cycling experiment shows good stability with the retention of initial capacitance values of 88% after 2000 galvanostatic cycles. The experimental results testify that using Fe3+/Fe2+ redox electrolyte has a good prospect for improving the performances of energy-storage devices.展开更多
In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCN...In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.展开更多
Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, ...Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, which indicated that PANI and face-centered-cubic silver were synthesized under γ-ray irradiation. The reaction mechanism were discussed, which revealed that the PANI was formed by the reaction of aniline cation radicals formed by the reaction of aniline cation and -OH, and Ag was formed by the reaction of Ag+ and eaq. The morphology of the composite consisted of PANI nanofibers and Ag nanoparticles, and the mechanism of the morphology formation was discussed, which revealed that the rapid mixing like polymerization process might play an important role. It was revealed that the transport behavior of the composite well fitted with the variable-range-hopping model in 80-300 K and deviated from the model below 80 K.展开更多
Shape memory polymer (SMP) blends based on polyurethane (PU) and polyaniline (PANI) were prepared via chemical in situ polymerization process. The thermal, mechanical, electrical and shape memory properties were...Shape memory polymer (SMP) blends based on polyurethane (PU) and polyaniline (PANI) were prepared via chemical in situ polymerization process. The thermal, mechanical, electrical and shape memory properties were investigated. The structural characterization and morphology of the polymer blends were inspected by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively. The 1 wt% of PANI loading enhanced the thermal stability of the system up to 339 ~C. According to differential scanning calorimetry (DSC), the glass transition temperature (Tg) and melting temperature (Tm) of PU/PANI blends increased with the polyaniline loading (0.1 wt%-l wt%). Improved mechanical properties such as tensile strength and Young's modulus of PU matrix were also observed with PANI. Moreover, the electrical conductivity of PU/PANI blends was also found to be a function of PANI loading. Remarkable recoverability of thermally triggered shape memory (SM) behavior to the extent of 96% was achieved for 1 wt% PANI blend.展开更多
A novel nano-composite of polyaniline/mesoporous carbon(PANI/CMK-3) was prepared with mesoporous carbon(CMK-3) serving as the support.Electrochemical asymmetric capacitors have been successfully designed by using ...A novel nano-composite of polyaniline/mesoporous carbon(PANI/CMK-3) was prepared with mesoporous carbon(CMK-3) serving as the support.Electrochemical asymmetric capacitors have been successfully designed by using PANI/CMK-3 composite and CMK-3 as positive and negative electrode,respectively.The results showed that the discharge capacity of the asymmetric capacitor could reach 87.4 F/g under the current density of 5 mA/cm^2 and cell voltage of 1.4 V.The energy density of the asymmetric capacitor was up to 23.8 Wh/kg with a power density of 206 W/kg.Furthermore,PANI/CMK-3-CMK-3 asymmetric capacitor using this PANI/CMK-3 nano-composite could be activated quickly and possess high charge-discharge efficiency.展开更多
Platinum was electrodeposited onto a polyaniline-modified carbon fiberelectrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in thelevel of platinum utilization currently achieved i...Platinum was electrodeposited onto a polyaniline-modified carbon fiberelectrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in thelevel of platinum utilization currently achieved in electrocatalytic systems. This electrodepreparation consists of a two-step procedure: first electropolymerization of aniline onto carbonfiber and then electrodeposition of platinum. The catalytic activity of theplatinum-polyanihne-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a barecarbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current ofmethanol on Pt/PAni/C is 50.7 mA centre dot cm^(-2), which is 6.7 times higher than 7.6 mA centredot cm^(-2) on the Pt/C. Scanning electron microscopy was used to investigate the dispersion of theplatinum particles of about 0.4 um.展开更多
N-alkylation of sulfosalicylic acid-doped polyaniline(PANI-SSA)was used to promote the anticorrosion performance of PANI-SSA/epoxy coating for 5083 Al alloy.PANI-SSA was modified with C5H11Br and C12H25Br in polar sol...N-alkylation of sulfosalicylic acid-doped polyaniline(PANI-SSA)was used to promote the anticorrosion performance of PANI-SSA/epoxy coating for 5083 Al alloy.PANI-SSA was modified with C5H11Br and C12H25Br in polar solvents IPA(isopropanol)and DMF(dimethylformamide),and then characterized by FTIR,XPS and sedimentation experiments.Results showed that alkanes were successfully linked onto the PANI-SSA chains.The compatibility between N-alkylated PANI-SSA and epoxy/xylene solution was improved.SEM results proved a better dispersion performance of N-alkylated PANI-SSA in epoxy coatings,with less holes and aggregations.Corrosion protection of the epoxy coatings incorporating PANI-SSA and N-alkylated PANI-SSA on 5083 Al alloy was studied by EIS and adhesion measurements in 3.5%NaCl solution.It turned out that the epoxy coating including C12H25Br-modified PANI-SSA in DMF has yielded the highest values of impedance modulus and best protective properties.展开更多
Tannic acid is generally considered as one of polyphenolic pollutants, which may cause severe threats to the environment. In this study, polyaniline adsorbent was synthesized by chemical oxidation to remove tannic aci...Tannic acid is generally considered as one of polyphenolic pollutants, which may cause severe threats to the environment. In this study, polyaniline adsorbent was synthesized by chemical oxidation to remove tannic acid in aqueous solutions. The adsorption amount of tannic acid varied greatly with pH of solution and strong adsorption was at pH 5.8-6.7. Coexisting cations, such as Na+, K+, and Ca2+, can enhance the adsorption of tannic acid on poly- aniline, which may be contributed to the electrostatic interaction between tannic acid and polyaniline. The adsorp- tion process could be well described by Langmuir model and the maximum adsorption capacity was 117.65 rag.g〈 at 35℃and pH 6.0. The thermodynamic parameters calculated from the adsorption isotherms indicate that the ad- sorption of tannic acid is spontaneous and endothermic process. The polyaniline saturated with tannic acid can be desorbed in alkaline solution and regenerated adsorbent can be used repeatedly with high adsorption capacity, which implies that polyaniline adsorbents have a great potential in water purification for the removal of tannic acid.展开更多
Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PA...Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PANI coated CC(PANI-CC)based flexible electrodes were further used for the fabrication of flexible supercapacitor devices.For the comparison purpose,pure PANI has also been synthesized and tested for its electrochemical performance.The energy storage capacity of PANI and PANI–CC composite was investigated using electrochemical techniques like CV,GCD,and EIS in a potential range from 0 to 0.8 V in 1 M H_(2)SO_(4)electrolyte.PANI-CC flexible electrodes exhibited the highest specific capacitance of 691 F/g;whereas,pure PANI could only achieve 575 F/g of specific capacitance at 1 A/g.Composite also exhibited outstanding cyclic stability by recollecting 94%of its initial capacitance after 2000 GCD cycles.For actual implementation,a flexible supercapacitor device has been fabricated using stainless steel sheets and PANI-CC flexile electrodes.The energy storage performance of the PANI-CC flexible supercapacitor device was tested at several bending angles,which resulted in 72%of capacitance retention at a maximum bending angle of 140°compared to the capacitance obtained at an angle 0°(flat state).PANI-CC exhibited improved electrochemical performance than pure PANI due to the synergistic effect between PANI and CC.Here,CC helped in enhancing the conductivity and stability;whereas,PANI boosted the capacitance owing to its excellent porosity and fast pseudocapacitive charge storage response.展开更多
The direct coating of graphene sheets obtained by electrochemical exfoliation on commercial paper renders the preparation of highly conductive flexible paper substrate for subsequent deposition of polyaniline (PANi) n...The direct coating of graphene sheets obtained by electrochemical exfoliation on commercial paper renders the preparation of highly conductive flexible paper substrate for subsequent deposition of polyaniline (PANi) nanorods via electrochemical polymerization. The deposit ion of PANi can be well-controlled by adjusting the electrochemical polymerization time, leading to the formation of PANi coated graphene paper (PANi-GP). The as-prepared electrode exhibited high areal capacitance of 176 mF cm^-2 in three-electrode system at a current density of 0.2 mA cm^-2 which is around 10 times larger than that of pris-tine graphene paper due to the pseudocapacitive behavior of PANi. In-situ Raman test was used to determine the molecular changes during redox process of PANi. More importantly, all-solid-state symmetric capacitor assembled with two PANi-GP electrodes in a polymer electrolyte delivered an areal capacitanee of 123 mF cm^-2, corresponding to an areal energy density of 17.1 μWh cm^-2 and an areal power density of 0.25 mW cm^-2. The symmetric capacitor held a capacitive retention of 74.8% after 500 bending tests from 0 to 120°, suggesting the good flexibility and mechanical stability. These results showed the great promising application in flexible energy-storage devices.展开更多
Surface of TiO2 nanoparticles was modified with the in situ chemical oxidative polymerization of aniline. Polyaniline modified TiO2 nanoparticles (PANI-TiO2) were characterized with the FT-IR, XRD, SEM and TEM techn...Surface of TiO2 nanoparticles was modified with the in situ chemical oxidative polymerization of aniline. Polyaniline modified TiO2 nanoparticles (PANI-TiO2) were characterized with the FT-IR, XRD, SEM and TEM techniques. Results confirmed that PANI was grafted successfully on the surface of TiO2 nanoparticles, therefore agglomeration of nanoparticles decreased dramatically. Polyvinyl chloride nanocomposites filled with 1 wt%-5 wt% of PANI-TiO2 and TiO2 nanoparticles were prepared via the solution blending method. PVC nanocomposites were analyzed with FT-IR, XRD, SEM, TG/DTA, DSC and tensile test techniques. Effect of PANI as surface modifier of nanoparticles was discussed according to the final properties of PVC nanocomposites. Results demonstrated that deposition of PANI on the surface of TiO2 nanoparticles improved the interfacial adhesion between the constituents of nanocomposites, which resulted in better dispersion of nanoparticles in the PVC matrix. Also PVC/PANI-TiO2 nanocomposites showed higher thennal resistance, tensile strength and Young's modulus compared to those of unfilled PVC and PVC/TiO2 nanocomposites.展开更多
基金supported by the Natural Science Foundation of Liaoning Province(2023-MS-115).
文摘Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in aqueous solutions and inferior conductivity,which severely hinder their application.Herein,advantages are taken of the“conveyor effect”of conjugated polyaniline to prepare an oxygen defective tungstate-linked polyaniline(O_(d)-WOP)material with chrysanthemum-like microstructure.By virtue of the high electronic conductivity derived from conductive conjugated polyaniline skeleton,unbalanced charge distribution triggered by the defective structure,and reversibly rapid ion(de)intercalation benefited from the open framework with porous chrysanthemum-like microstructure,it delivers outstanding rate capability with a maximum specific capacity of 162.2 mAh g^(-1)and great cycle stability for storing NH_(4)^(+).Additionally,it also adopts a high reversible capacity of 140.4 mAh g^(-1)and outstanding cycling performance to store Ca^(2+).Consequently,the assembled O_(d)-WOP//PTCDI flexible aqueous ammonium ion batteries and calcium ion batteries exhibit superior capacities,energy densities and flexibilities.O_(d)-WOP achieves the NH_(4)^(+) and Ca^(2+)storage capability by interacting with them through hydrogen and ionic bonds,respectively.The deep insight from this work sheds light upon a novel strategy to excavate greater potential of transition metal compounds for aqueous ion batteries.
文摘Hemoglobin A1c(HbA1c),a key biomarker for long-term glucose regulation,is essential for diagnosing and managing diabetes mellitus.However,conventional HbA1c detection methods often suffer from limited sensitivity,narrow detection ranges,slow response times,and poor long-term stability.In this study,we developed a high-performance amperometric biosensor for the selective detection of Fructosyl Valine(FV),a model compound for HbA1c,by immobilizing Fructosyl Amino Acid Oxidase(FAAO)onto a glassy carbon electrode modified with electrospun polyaniline/polyindole-Mn_(2)O_(3) nanofibers.Operating at an applied potential of 0.27 V versus Ag/AgCl,the biosensor achieved a rapid detection time of 2 s for FV concentrations up to 50µM,with a signal-to-noise ratio of 3.Under optimized conditions(pH 7.0 and 35℃),the biosensor exhibited a wide linear detection range from 0.1 to 3 mM and a high sensitivity of 38.42µA/mM.Importantly,the sensor retained approximately 70% of its initial activity after 193 days of storage at 4℃,demonstrating excellent long-term stability.These results suggest that the FAAO/polyaniline/polyindole-Mn_(2)O_(3) nanocomposite-based biosensor offers a promising platform for sensitive,rapid,and durable detection of HbA1c,providing significant potential for improving diabetes monitoring and management.
基金funding from the Student Grant Project no.SGS_2022_003 of the Faculty of Chemical Technology at the University of Pardubice Czechia.
文摘Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energies of thermolysis,E_(a),of the pure NAs and their PANi-CACs were determined using the Kissinger method,and decomposition processes are discussed.Except for the RDX/PANi CACs,all the other CACs show higher E_(a) values for decomposition compared to their pure NA counterparts.For all CACs,relationships are specified between the E_(a) values,on the one hand,and the squares of the detonation velocities,enthalpies of formation,spark energy and impact sensitivities,on the other.The relationships between their low-temperature heats of decomposition,ΔH,from DSC,and their enthalpy of formation,logarithm of impact sensitivity,electric spark energy,as well as detonation energy,are described.The PANi favorably influences the density of the corresponding CACs;surprisingly close linear correlations were found,and explained,between these densities and the E_(a) values.This presence of PANi strongly increased the electrical spark sensitivity of the CACs in comparison to the base NAs.Based on the results obtained,it can be noted in particular the exceptional desensitization of HMX to impact and the increased sensitivity to electrical spark by coating its crystals with polyaniline.
基金financially supported by the National Natural Science Foundation of China(Nos.51973205 and 51773189)the Fundamental Research Funds for the Central Universities(Nos.WK9110000066,WK345000005 and WK345000006).
文摘As a highly promising conductive polymer material,the synthesis method,structure regulation,and performance improvement of polyaniline(PANI)are hot research topics.In this work,the radiation-induced polymerization of aniline in HNO_(3)solution was successfully achieved at room temperature without the use of chemical oxidants.Through the analysis of the radiation chemical reactions of inorganic acids and nitrate salt solutions,the characterization of the intermediate free radicals in the irradiated systems,and the influence of the pH of the solutions on the polymerization activity and product morphologies,the radiation-induced polymerization mechanism of aniline is discussed in detail and proposed.Only at a condition of[HNO_(3)]>[aniline],i.e.,pH<2.5,PANI can be successfully obtained underγ-ray radiation.The polymerization begins with the oxidation of aniline cations to aniline cation radicals by·NO_(3)generated by radiolysis reactions,and undergoes repeated three steps of monomer free radical recombination,deprotonation,and oxidation reaction of·NO_(3),thus forming a PANI macromolecule.In addition to the polymerization reaction,the aniline units are protonated and oxidized because of the strongly acidity and oxidation of the reaction system under γ-ray irradiation,which means that the molecular chain structure of the radiation-synthesized PANI can be regulated by pH,nitrate concentration,and irradiation conditions.Radiation-synthesized PANI has a moderate protonation and oxidation state,which can be used for the preparation of PANI supercapacitors with better electrochemical properties than those prepared by chemical oxidation under the same conditions.This work presents a new radiation-synthesis method and polymerization mechanism of PANI,which not only expands the application of radiation technique in the field of polymer synthesis,but also provides a new idea for the structural regulation and electrochemical property optimization of PANI.
基金financially supported by the Beijing Natural Science Foundation(No.L233016)。
文摘Polyaniline(PANi)hydrogels have a wide range of applications in artificial skin,flexible robotics,and movement monitoring.Nevertheless,limited by the modulus mismatch between rigid PANi and the soft hydrogel matrix,the high strength and toughness of the PANi hydrogel are mutually exclusive.Although the introduction of sacrificial bonds into the hydrogel network can alleviate this contradiction to a certain extent,it always causes pronounced energy hysteresis during hydrogel deformation.Inspired by the energy storage and release of macroscopic springs,in this work,we propose a molecular entanglement approach for the fabrication of PANi hydrogels featuring high toughness and low hysteresis,where flexible poly(ethylene glycol)(PEG)is entangled with chemically cross-linked poly(acrylic acid)(PAA)as a hydrogel matrix,and rigid PANi as a conductive filler.The resultant PAA/PEG/PANi hydrogel exhibited high mechanical properties(fracture strength of 0.75 MPa and toughness of 4.81 MJ·m^(-3))and a low energy dissipation ratio(28.2%when stretching to 300%).Moreover,the PAA/PEG/PANi hydrogel possesses a good electrical response to external forces and can be employed as a strain sensor to monitor human joint movements by producing specific electrical signals.This work provides a straightforward strategy for preparing tough conductive PANi hydrogels with low hysteresis,showing potential for the development of healthcare devices.
基金supported by the National Natural Science Foundation of China(Grant No.21906015)the Fundamental Research Funds for the Central Universities(Grant No.N2205006 and N2225013).
文摘Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion storage due to the properties of its excellent conductivity and inherent theoretical capacity.However,the poor cycling stability and low loadings of PANI limit its application in energy storage.In this study,PANI-x electrodes with high mass loadings are successfully prepared by the electrodeposition method for reversible AlCl_(2)^(+)storage.Among them,the PANI-2 electrode possesses the highest areal capacity(0.59 and 0.51 mAh cm^(−2)at the current density of 0.5 and 10 mA cm^(−2))and excellent cycling stability in saturated AlCl3.Ex situ N 1s fitting spectra of PANI-2 and molecular dynamics simulations of 1 M,3 M,and saturated AlCl_(3)electrolytes demonstrate that PANI can achieve reversible redox reactions in saturated AlCl3,thereby achieving its excellent stability.Density functional theory calculations and ex situ spectra characterizations of PANI-2 demonstrate the insertion/de-insertion mechanism in the form of AlCl_(2)^(+)ions.In conclusion,PANI-2|Saturated AlCl_(3)|EG(exfoliated graphite foil)full cell is assembled successfully.This work provides promising guidance for the preparation of high-loading electrodes for AIBs.
基金supported by the National Natural Science Foundation of China(No.21303105)the Scientific Research Foundation for the Returned Overseas Chinese Scholars and State Education Ministry(No.ZX2012-05)
文摘The synthesis of chiral polyaniline (PANI) induced by modified hemoglobin (Hb) was pro- foundly explored for the first time. Results revealed that after being separated, inactivated or immobilized, Hb can still induce the formation of chiral PANI successfully, suggesting that Hb can be used as the chiral inducers regardless of harsh reaction conditions. By examining the properties of PANI induced by modified Hb, it was found that Hb(inactivated)-PANI possessed excellent chirality, stability, and crystalline structure. The globin separated from Hb was demonstrated to have the ability of inducing the production of chiral PANI whereas the hematin from Hb had no capacity to direct enantio specificity for the PANI chains. Results indicated that Hb(immobilized)-PANI exhibited poor yield, doping state, and crys- talline structure, indicating that the immobilization of Hb by entrapment was not beneficial to the polymerization reaction. Results also showed that the structure of Hb may have significant effects on the morphologies of chiral PANI.
文摘A clay-like conductive material comprising polyaniline(PANI)-acetylene black particles is fabricated as a hole conductor for dye sensitized solar cell(DSSC).The results show that the introduction of acetylene black into the polymer electrolyte improves the photovoltaic behavior of solid-state DSSC,owing to the increase of the hole mobility of PANI electrolyte,the improvement of the wetting quality of the composite electrolyte,and the reinforcement of interface contact between electrode and the electrolyte.Finally,the overall energy conversion efficiency of DSSC with PANI-50%(in weight)acetylene black electrolyte is 48% of that of liquid DSSC.Therefore,the PANI-acetylene black composition is a credible alternative to hole conductor in application of solid DSSC.
基金supported by the National Natural Science of Foundation of China(21676140)the fund from the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201402)the Project of Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions~~
文摘Palladium nanoparticles supported on cross-linked polyaniline with bulky phosphorus ligands were developed.These catalysts showed high efficiency in the Suzuki-Miyaura reaction of aryl chlorides and bromides with phenylboronic acids.Aryl chlorides and bromides with functional groups,such as CN,MeO,CHO,MeCO and NO_2,were converted to the corresponding biphenyls in high yields with catalyst loading.Additionally,the catalysts combined high activity with good reusability;they could be used at least five times for the Suzuki-Miyaura coupling reaction.
基金Project(51172190)supported by the National Natural Science Foundation of NationProject(07JJ6015)supported by the Natural Science Foundation of Hunan Province,China
文摘The Fe3+/Fe2+ redox electrolyte for use in polyaniline/tin oxide (PANI/SnO2)supercapacitors was reported. The influences of redox electrolyte based on different Fe3+/Fe2+ ion pair concentrations in 1 mol/LH2SO4 solution on the pseudocapacitive behaviors of PANI/SnO2 supercapacitor were investigated. The electrochemical properties of the supercapacitor were studied by cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. It is found that the performance of the supercapacitor is the best when the Fe3+/Fe2+ concentrationis 0.4 mol/L and its initial specific capacitance is 1172 F/g at an applied current density of 1 A/g. The long-term cycling experiment shows good stability with the retention of initial capacitance values of 88% after 2000 galvanostatic cycles. The experimental results testify that using Fe3+/Fe2+ redox electrolyte has a good prospect for improving the performances of energy-storage devices.
基金This work was supported by the Doctoral Program of Higher Education of China (No.20110010110007) and the Beijing Municipal Natural Science Foundation (No.2102035).
文摘In this work, we fabricated the polyaniline/silver nanoparticle/multi-walled carbon nanotube (PANI/Ag/MWCNT) composites by in situ polymerization of aniline on the wall of Ag/MWCNTs with different aniline to Ag/MWCNT mass ratios. The chemical structure of the ternary composites was characterized by Fourier transform infrared spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy. Scanning electron microscope and high-resolution transmission electron microscopy were used to observe the morphology of the ternary composites. The results showed that the polyaniline PANI layer was prepared successfully and it covered Ag/MWCNTs completely. In addition, Ag nanoparticles between the MWCNT core and the PANI layer existed in the form of elemental crystal, which could contribute to the electrochemical performance of the composites. Then we prepared the composite electrodes and studied their electrochemical behaviors in 1 mol/L KOH. It was found that these composite electrodes had very low impedance, and exhibited lower resistance, higher electrochemical activity, and better cyclic stability compared with pure PANI electrode. Particularly, when the mass ratio of aniline to Ag/MWCNTs was 5:5, the composite electrode displayed a small equivalent series resistance (0.23 Ω) and low interfacial charge transfer resistance (〈0.25 Ω), as well as 160 F/g of the maximum specific capacitance at a current density of 0.25 A/g in KOH solution. We could conclude that the composite material had potential applications as cathode materials for lithium batteries and supercapacitors.
文摘Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, which indicated that PANI and face-centered-cubic silver were synthesized under γ-ray irradiation. The reaction mechanism were discussed, which revealed that the PANI was formed by the reaction of aniline cation radicals formed by the reaction of aniline cation and -OH, and Ag was formed by the reaction of Ag+ and eaq. The morphology of the composite consisted of PANI nanofibers and Ag nanoparticles, and the mechanism of the morphology formation was discussed, which revealed that the rapid mixing like polymerization process might play an important role. It was revealed that the transport behavior of the composite well fitted with the variable-range-hopping model in 80-300 K and deviated from the model below 80 K.
基金financially supported by the Higher Education Commission(HEC),Islamabad,Pakistan under the indigenous Ph D fellowship scheme and IRSIP program
文摘Shape memory polymer (SMP) blends based on polyurethane (PU) and polyaniline (PANI) were prepared via chemical in situ polymerization process. The thermal, mechanical, electrical and shape memory properties were investigated. The structural characterization and morphology of the polymer blends were inspected by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively. The 1 wt% of PANI loading enhanced the thermal stability of the system up to 339 ~C. According to differential scanning calorimetry (DSC), the glass transition temperature (Tg) and melting temperature (Tm) of PU/PANI blends increased with the polyaniline loading (0.1 wt%-l wt%). Improved mechanical properties such as tensile strength and Young's modulus of PU matrix were also observed with PANI. Moreover, the electrical conductivity of PU/PANI blends was also found to be a function of PANI loading. Remarkable recoverability of thermally triggered shape memory (SM) behavior to the extent of 96% was achieved for 1 wt% PANI blend.
基金supported by the National Natural Science Foundation of China(No.50602020)the National Basic Research Program of China(No.2007CB216408).
文摘A novel nano-composite of polyaniline/mesoporous carbon(PANI/CMK-3) was prepared with mesoporous carbon(CMK-3) serving as the support.Electrochemical asymmetric capacitors have been successfully designed by using PANI/CMK-3 composite and CMK-3 as positive and negative electrode,respectively.The results showed that the discharge capacity of the asymmetric capacitor could reach 87.4 F/g under the current density of 5 mA/cm^2 and cell voltage of 1.4 V.The energy density of the asymmetric capacitor was up to 23.8 Wh/kg with a power density of 206 W/kg.Furthermore,PANI/CMK-3-CMK-3 asymmetric capacitor using this PANI/CMK-3 nano-composite could be activated quickly and possess high charge-discharge efficiency.
文摘Platinum was electrodeposited onto a polyaniline-modified carbon fiberelectrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in thelevel of platinum utilization currently achieved in electrocatalytic systems. This electrodepreparation consists of a two-step procedure: first electropolymerization of aniline onto carbonfiber and then electrodeposition of platinum. The catalytic activity of theplatinum-polyanihne-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a barecarbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current ofmethanol on Pt/PAni/C is 50.7 mA centre dot cm^(-2), which is 6.7 times higher than 7.6 mA centredot cm^(-2) on the Pt/C. Scanning electron microscopy was used to investigate the dispersion of theplatinum particles of about 0.4 um.
基金financially supported by the National Natural Science Foundation of China(Nos.51622106 and 51871049).
文摘N-alkylation of sulfosalicylic acid-doped polyaniline(PANI-SSA)was used to promote the anticorrosion performance of PANI-SSA/epoxy coating for 5083 Al alloy.PANI-SSA was modified with C5H11Br and C12H25Br in polar solvents IPA(isopropanol)and DMF(dimethylformamide),and then characterized by FTIR,XPS and sedimentation experiments.Results showed that alkanes were successfully linked onto the PANI-SSA chains.The compatibility between N-alkylated PANI-SSA and epoxy/xylene solution was improved.SEM results proved a better dispersion performance of N-alkylated PANI-SSA in epoxy coatings,with less holes and aggregations.Corrosion protection of the epoxy coatings incorporating PANI-SSA and N-alkylated PANI-SSA on 5083 Al alloy was studied by EIS and adhesion measurements in 3.5%NaCl solution.It turned out that the epoxy coating including C12H25Br-modified PANI-SSA in DMF has yielded the highest values of impedance modulus and best protective properties.
基金Supported by the National Major Research Plan for Water Pollution Control and Treatment of China (2008ZX07010-003-002), the National Natural Science Foundation of China (21107065) and the Scientific Research Program Funded by Shaanxi Pro- vincial Education DePartment (HJK0769).
文摘Tannic acid is generally considered as one of polyphenolic pollutants, which may cause severe threats to the environment. In this study, polyaniline adsorbent was synthesized by chemical oxidation to remove tannic acid in aqueous solutions. The adsorption amount of tannic acid varied greatly with pH of solution and strong adsorption was at pH 5.8-6.7. Coexisting cations, such as Na+, K+, and Ca2+, can enhance the adsorption of tannic acid on poly- aniline, which may be contributed to the electrostatic interaction between tannic acid and polyaniline. The adsorp- tion process could be well described by Langmuir model and the maximum adsorption capacity was 117.65 rag.g〈 at 35℃and pH 6.0. The thermodynamic parameters calculated from the adsorption isotherms indicate that the ad- sorption of tannic acid is spontaneous and endothermic process. The polyaniline saturated with tannic acid can be desorbed in alkaline solution and regenerated adsorbent can be used repeatedly with high adsorption capacity, which implies that polyaniline adsorbents have a great potential in water purification for the removal of tannic acid.
基金the research grant obtained from the Government of India,Under the DST-Nanomission program(No.SR/NM/NS-1110/2012)the DST-Inspire program(IFA12-PH-33)。
文摘Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PANI coated CC(PANI-CC)based flexible electrodes were further used for the fabrication of flexible supercapacitor devices.For the comparison purpose,pure PANI has also been synthesized and tested for its electrochemical performance.The energy storage capacity of PANI and PANI–CC composite was investigated using electrochemical techniques like CV,GCD,and EIS in a potential range from 0 to 0.8 V in 1 M H_(2)SO_(4)electrolyte.PANI-CC flexible electrodes exhibited the highest specific capacitance of 691 F/g;whereas,pure PANI could only achieve 575 F/g of specific capacitance at 1 A/g.Composite also exhibited outstanding cyclic stability by recollecting 94%of its initial capacitance after 2000 GCD cycles.For actual implementation,a flexible supercapacitor device has been fabricated using stainless steel sheets and PANI-CC flexile electrodes.The energy storage performance of the PANI-CC flexible supercapacitor device was tested at several bending angles,which resulted in 72%of capacitance retention at a maximum bending angle of 140°compared to the capacitance obtained at an angle 0°(flat state).PANI-CC exhibited improved electrochemical performance than pure PANI due to the synergistic effect between PANI and CC.Here,CC helped in enhancing the conductivity and stability;whereas,PANI boosted the capacitance owing to its excellent porosity and fast pseudocapacitive charge storage response.
基金financially supported by the National Natural Science Foundation of China(No.21503116)The Taishan Scholars Program of Shandong Province(No.tsqn20161004)the Youth1000 Talent Program of China
文摘The direct coating of graphene sheets obtained by electrochemical exfoliation on commercial paper renders the preparation of highly conductive flexible paper substrate for subsequent deposition of polyaniline (PANi) nanorods via electrochemical polymerization. The deposit ion of PANi can be well-controlled by adjusting the electrochemical polymerization time, leading to the formation of PANi coated graphene paper (PANi-GP). The as-prepared electrode exhibited high areal capacitance of 176 mF cm^-2 in three-electrode system at a current density of 0.2 mA cm^-2 which is around 10 times larger than that of pris-tine graphene paper due to the pseudocapacitive behavior of PANi. In-situ Raman test was used to determine the molecular changes during redox process of PANi. More importantly, all-solid-state symmetric capacitor assembled with two PANi-GP electrodes in a polymer electrolyte delivered an areal capacitanee of 123 mF cm^-2, corresponding to an areal energy density of 17.1 μWh cm^-2 and an areal power density of 0.25 mW cm^-2. The symmetric capacitor held a capacitive retention of 74.8% after 500 bending tests from 0 to 120°, suggesting the good flexibility and mechanical stability. These results showed the great promising application in flexible energy-storage devices.
基金financially supported by the University of Tabriz
文摘Surface of TiO2 nanoparticles was modified with the in situ chemical oxidative polymerization of aniline. Polyaniline modified TiO2 nanoparticles (PANI-TiO2) were characterized with the FT-IR, XRD, SEM and TEM techniques. Results confirmed that PANI was grafted successfully on the surface of TiO2 nanoparticles, therefore agglomeration of nanoparticles decreased dramatically. Polyvinyl chloride nanocomposites filled with 1 wt%-5 wt% of PANI-TiO2 and TiO2 nanoparticles were prepared via the solution blending method. PVC nanocomposites were analyzed with FT-IR, XRD, SEM, TG/DTA, DSC and tensile test techniques. Effect of PANI as surface modifier of nanoparticles was discussed according to the final properties of PVC nanocomposites. Results demonstrated that deposition of PANI on the surface of TiO2 nanoparticles improved the interfacial adhesion between the constituents of nanocomposites, which resulted in better dispersion of nanoparticles in the PVC matrix. Also PVC/PANI-TiO2 nanocomposites showed higher thennal resistance, tensile strength and Young's modulus compared to those of unfilled PVC and PVC/TiO2 nanocomposites.