Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to p...Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.展开更多
Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated P...Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated PET materials with high crystallinity remain insufficient.Here,we endeavored to improve the degradation capability of a WCCG mutant of leaf-branch compost cutinase(LCC)on a unpretreated PET substrate(crystallinity>40%)by employing iterative saturation mutagenesis.Using this method,we developed a high-throughput screening strategy appropriate for unpretreated substrates.Through extensive screening of residues around the substrate-binding groove,two variants,WCCG-sup1 and WCCG-sup2,showed good depolymerization capabilities with both high-(42%)and low-crystallinity(9%)substrates.The WCCG-sup1 variant completely depolymerized a commercial unpretreated PET product in 36 h at 72℃.In addition to enzyme thermostability and catalytic efficiency,the adsorption of enzymes onto substrates plays an important role in PET degradation.This study provides valuable insights into the structure-function relationship of LCC.展开更多
The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution...The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.展开更多
It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence an...It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.展开更多
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ...The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.展开更多
Poly(ethylene 2,5-furandicarboxylate)(PEF),a bioplastic synthesized via the polymerization of 2,5-furandicarboxylic acid(FDCA)with ethylene glycol,can be served as a substitute to petroleum-based polyethylene terephth...Poly(ethylene 2,5-furandicarboxylate)(PEF),a bioplastic synthesized via the polymerization of 2,5-furandicarboxylic acid(FDCA)with ethylene glycol,can be served as a substitute to petroleum-based polyethylene terephthalate(PET)due to its enhanced material properties.However,the fabrication of PEF with stable and desirable properties is still a challenge,largely due to the impurities in FDCA.In this study,a highly efficient purification strategy for FDCA was proposed,utilizing a dioxane/H_(2)O binary solvent system for effective crystallization.Furthermore,PEFs were synthesized from FDCA with varying impurity and the effects of these impurities were systematically characterized.The results revealed that impurities in FDCA could result in PEFs with relatively poor thermal properties.This study provides crucial insights for the impact of impurities on PEF properties and FDCA purification.展开更多
The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by...The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by sulfonation of ASIBS with acetyl sulfate.The hydrophilic ionic channels were generated for proton exchange membranes(PEMs)by ion aggregation of-SO_(3)H groups and microphase separation between hydrophobic polyisobutylene and hydrophilic sulfonated poly(α-methyl styrene)segments in S-ASIBS.The proton transport ability was improved while oxidative stability was decreased by increasing SP in S-ASIBS.The appropriate SP of about 12.7 mol%in S-ASIBS provides the available PEMs with high proton transport ability,low methanol permeability and good oxidative stability.The absence of active tertiary hydrogen atoms along S-ASIBS copolymer chains avoids their attack by peroxy radicals.The residual rates of weight(RW)and proton conductivity(Rσ)of S-ASIBS-12.7 membrane after oxidation treatment for 916 h were 84.3%and 88.1%respectively,near to those of commercial Nafion 117(RW=87.9%,Rσ=90.3%).The membrane electrode assembly(MEA)could be prepared by using various S-ASIBS as PEMs for direct methanol fuel cell.The single cell with S-ASIBS-12.7 MEA behaves high performance of open circuit voltage(OCV)of 548 mV and peak power density(Pmax)of 36.1 mW·cm^(-2),which is similar to those of Nafion 117(OCV=506 mV,P_(max)=35.6 mW·cm^(-2)).To the best of our knowledge,this is the first example of advanced S-ASIBS membrane with high proton conductivity,excellent fuel barrier property and remarkable oxidative stability for promising PEMs.展开更多
Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interfac...Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.展开更多
The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources.However,improving the heat resistance a...The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources.However,improving the heat resistance and hydrophilicity of bio-based polyesters remains a significant challenge.Herein,we introduce N,N'-trans-1,4-cyclohexane-bis(pyrrolidone-4-methylcarboxylate)(CBPC),a novel bio-based tricyclic dibasic ester synthesized from renewable dimethyl itaconic acid and trans-1,4-cyclohexane diamine via an aza-Michael addition reaction.As a unique comonomer,CBPC features a rigid tricyclic backbone that significantly enhances chain packing and thermal stability,whereas its pyrrolidone side groups impart tunable polarity and improved hydrophilicity.Using CBPC,diphenyl carbonate,and 1,4-butylene glycol,a series of PBCC copolymers with 10 mol%-30 mol%CBPC was synthesized via ester-exchange and melt polycondensation methods.Incorporation of CBPC raised the melting temperature(Tm)from 56.8℃to 225.8℃and the initial decomposition temperature(Td5%)from 258.0℃to 306.7℃,positioning PBCC among the most heat-resistant bio-based polyesters reported.Additionally,the pyrrolidone units enabled transformation from hydrophobic to hydrophilic.This study demonstrates that CBPC is an effective and innovative building block for the design of bio-based polymers with enhanced thermal and surface properties,offering a promising strategy for the development of high-performance sustainable materials.展开更多
Most commercial plastics cannot easily degrade,which raises a number of sustainability issues.To address the current problem of plastic pollution,the research and development of easily degradable and recyclable polyme...Most commercial plastics cannot easily degrade,which raises a number of sustainability issues.To address the current problem of plastic pollution,the research and development of easily degradable and recyclable polymers has become an attractive subject.Herein,a new monomer of thiosalicylic methyl glycolide(TSMG)was synthesized using one-pot method and high molecular weight poly(thiosalicylic methyl glycolide)(PTSMG,M_(n) up to 300 kDa)can be obtained via the ring-opening polymerization(ROP)of TSMG.PTSMG exhibits good closed-loop recyclability and hydrolytic degradability,where PTSMG can generate pristine monomers through sublimation thermal depolymerization conditions due to the presence of thiophenol ester bond in the polymer chains,and can be degraded rapidly in aqueous solution,which provides a potential solution to the current plastic pollution problem.展开更多
Herein,a simple method for preparing poly(vinylidene fluoride)(PVDF)films with controlledβ/γratios by spin-coating assisted by potassium bromide(KBr)is proposed.The results show that the relative fraction of theβph...Herein,a simple method for preparing poly(vinylidene fluoride)(PVDF)films with controlledβ/γratios by spin-coating assisted by potassium bromide(KBr)is proposed.The results show that the relative fraction of theβphase(denoted as Fβ)for the films prepared on the KBr surface first decreased until a critical temperature(denoted as Tc)was reached,and then increased with increasing spin-coating temperature.This was related to the dissolved K and Br ions in the films.Further experiments showed that below Tc,high humidity can enhance Fβbut exhibit an adverse effect at and above Tc.The high content of K and Br ions in the PVDF/KBr blend film and larger shear stress can facilitate the formation of theβphase,leading exclusively to the formation ofβ-andγ-phases.The mechanism responsible for the change in Fβwith temperature was proposed:below Tc,the decrease in water intake with increasing temperature results in the decline of Fβ,whereas above Tc,the increase in Fβwith temperature is attributed to the synergistic effect of ions and shear stress.Ultimately,this paves the way for fabricating PVDF films with tailoredβ/γratios for electroactive and energy-harvesting applications.展开更多
Fluorescent polyurea-carbon dots(PU-CD) were successfully achieved through a co-pyrolysis technique, combining polyurea(PU) with carboxyl-containing carbon dots(PCD) at a temperature of 220 ℃. The PU was fabricated v...Fluorescent polyurea-carbon dots(PU-CD) were successfully achieved through a co-pyrolysis technique, combining polyurea(PU) with carboxyl-containing carbon dots(PCD) at a temperature of 220 ℃. The PU was fabricated via a simple precipitation polymerization process using toluene disocyanate in a water/acetone binary solvent system. PCD was generated by thermal treatment of poly(ethylene glycol)(PEG) at the same elevated temperature. To elucidate the structural characteristics of PU-CD, as well as its precursor components PU and PCD, a comprehensive suite of analytical techniques was employed, including transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance(NMR), dynamic light scattering(DLS) and X-ray photoelectron spectroscopy(XPS). These analyses confirmed the formation of amide bonds resulting from the reaction between the terminal amines of PU and the carboxyl groups of PCD. An in-depth comparison of the fluorescence properties of PU-CD revealed marked enhancements in fluorescence intensity when contrasted with PU, PEG, and the individual PCD. The research explored the impact of various factors such as concentration, pH in aqueous solutions, and solvent type on the fluorescence emission of these materials, providing valuable insights into their emission mechanisms. It was particularly noteworthy that both PCD and PU-CD exhibited a confined-domain crosslink-enhanced emission effect. Utilizing the aqueous dispersion of PU-CD as a fluorescent probe,the detection of doxycycline(DOX), a long-acting, broad-spectrum, semi-synthetic tetracycline antibiotic, was achieved with a detection limit of 2.9×10^(-7)mol/L. This study introduces a simple, green, and cost-effective fluorescent probe for the detection of DOX, which has significant potential for application in the realms of analytical chemistry and food safety monitoring in the future.展开更多
Considering large volume variation and dissolution issues of some promising electrode materials for chloride ion batteries(CIB),the construction of solid polymer electrolytes(SPE)for efficient chloride ion transport i...Considering large volume variation and dissolution issues of some promising electrode materials for chloride ion batteries(CIB),the construction of solid polymer electrolytes(SPE)for efficient chloride ion transport is intriguing.However,this is hindered by low ionic conductivity of chloride SPEs and poor cycling performance of CIBs.Herein,an in-situ polymerized and cross-linked poly(ethylene gly-col)diacrylate-based chloride SPE with a low plasticizer content of succinonitrile is designed,yielding a room-temperature ionic conductivity of 7.6×10^(−5) S cm^(−1),which is higher than that of previously re-ported SPEs for CIBs.Moreover,the use of the asprepared SPE achieves an integrated organic cathode with significantly enhanced rate performance and capacity retention of 96.1%after 100 cycles at room temperature,which is much higher than 49.9%(80 cycles)of the cathode in the CIB with a sandwiched structure.These improved properties are also superior to that of other reported cathodes coupled with different chloride SPEs.The chloride ion transfer mechanism of the cathode is revealed by X-ray photo-electron spectroscopy and energy dispersive spectroscopy.展开更多
The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of po...The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.展开更多
In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was...In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was functionalized with dual moieties:azide groups for covalent immobilization of DBCO-modified DNA primers via click chemistry and tunable hydrophilic side chains to optimize biocompatibility and surface properties.Systematic screening revealed that hydrophobic azide carriers combined with neutral hydroxyl groups maximized the DNA immobilization efficacy,approaching the performance of commercial polyacrylamide-based polymers.The negatively charged carboxyl groups severely impede DNA primer attachment.Higher molecular weight derivatives further enhance the efficacy of DNA immobilization.In NGS validation,optimized surface modification polymers achieved robust surface density of clustered DNA and high sequencing accuracy,surpassing quality benchmarks and comparable to those of conventional analogs.This platform demonstrates significant potential for tailoring high-sensitivity surfaces for genomic applications,advancing clinical diagnostics,and personalized medicine.展开更多
Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the...Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.展开更多
The facile synthesis of high-valued polymers from waste molecules or low-cost common chemicals presents a significant challenge.Here,we develop a series of degradable poly(thiocarbonate)s from the new step-growth poly...The facile synthesis of high-valued polymers from waste molecules or low-cost common chemicals presents a significant challenge.Here,we develop a series of degradable poly(thiocarbonate)s from the new step-growth polymerization of diols,carbonyl sulfide(CoS,or carbon disulfide,CS_(2)),and dichlorides.Diols and dichlorides are common chemicals,and CoS(CS_(2))is released as industrial waste.In addition to abun-dant feedstocks,the method is efficient and performed under mild conditions,using common organic bases as catalysts,and affording unprece-dented polymers.When cos,diols,and dihalides were used as monomers,optimized conditions could completely suppress the oxygen-sulfur exchange reaction,enabling the efficient synthesis of well-defined poly(monothiocarbonate)s with melting points ranging from 48°C to 101°C.These polymers,which have a structure similar to polyethylene with low-density in-chain polar groups,exhibit remarkable toughness and ductili-ty that rival those of high-density polyethylene(melting point:90°C,tensile strength:21.6±0.7 MPa,and elongation at break:576%).Moreover,the obtained poly(monothiocarbonate)s can be chemically degraded by alcoholysis to yield small-molecule diols and dithiols.When CS_(2)was used in place of cos,a pronounced oxygen-sulfur exchange reaction occurred.By optimizing reaction condition,it was found that polymers with-S(C=O)S-and-S(C=S)S-as the main repeating units exhibited high thermal stability and crystallinity.Thus,a new approach for regulat-ing the structure of polythiocarbonates via the oxygen-sulfur exchange reaction is developed.Overall,the polymers hold great potential for green materials due to their facile synthesis,readily available feedstocks,excellent performance,and chemical degradability.展开更多
The deformation mechanism of glycerol plasticized poly(vinyl alcohol)(PVA)with different hydrolyses(88%,92%,98%)at elevated temperatures(60-100℃)was elucidated by in situ synchrotron radiation X-ray scattering.The vi...The deformation mechanism of glycerol plasticized poly(vinyl alcohol)(PVA)with different hydrolyses(88%,92%,98%)at elevated temperatures(60-100℃)was elucidated by in situ synchrotron radiation X-ray scattering.The vinyl acetate(VAc)in PVA acts as a non-crystalline chain defect,which significantly influences the plastic deformation and stretching-induced crystallization behavior of PVA.The key microstructural parameters of PVA during deformation,such as crystallinity(χ_(c)),lateral crystallite size(L),and long period(l),in combination with the stress-strain curves,were obtained.The experimental results show that the deformation process of the plasticized PVA film present a three-stage evolution:(i)a plastic deformation zone.The plastic deformation of the crystallite occurs as evidenced by the apparent decrease in crystallinity and lamellar reorientation induced by stretching;(ii)the stress softening zone.The decreasing trend of crystallinity becomes slow,and the long period becomes smaller,which indicates that PVA crystallization is induced by stretching;and(iii)the strain-hardening zone.There is a synergistic effect between the crystallite destruction and formation.Further research reveals that a high temperature and low degree of alcoholysis favor the stretching-induced crystallization of PVA,while the system with a high degree of alcoholysis shows significant characteristics of preferred crystal growth.展开更多
Two acetylene polymers containing cyanobiphenyl-based mesogens, poly{10-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-decyne} (PA8CN), which has a relatively flexible polyalkyne backbone, and poly {[4-(((12-((4'-cy...Two acetylene polymers containing cyanobiphenyl-based mesogens, poly{10-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-decyne} (PA8CN), which has a relatively flexible polyalkyne backbone, and poly {[4-(((12-((4'-cyano-4-biphenylyl)oxy)dodecyl)oxy) carbonyl) phenyl]-acetylene} (PB12CN), which has a fairly rigid poly(phenylacetylene) backbone, were synthesized using respectively WCl6 and [Rh(nbd)Cl](2) as the catalysts. PA8CN exhibits enantiotropic interdigitated smectic A phase (S-Ad) over a temperature range as wide as ca. 100 degrees C, whereas PB12CN is non-mesomorphic, demonstrating that the backbone rigidity plays an important role in determining the liquid crystallinity of the polyacetylenes.展开更多
Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,an...Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied.Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA.The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m^2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m^2),and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%)was higher by about 45 times that of PLA(6.2%).The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA,and the elongation at break(MD/TD)of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%,whereas that of PLA was only 2.7%/3.0%.POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS.With increasing PPCU content from 5%to 20%,the density of spherulite nucleation increased and the size of crystalline particles decreased continuously,but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30%to 40%.The PLA/MBS/PPCU films exhibited excellent mechanical properties,which expanded the application range of these biodegradable films.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22271252 and 22201105)。
文摘Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.
文摘Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated PET materials with high crystallinity remain insufficient.Here,we endeavored to improve the degradation capability of a WCCG mutant of leaf-branch compost cutinase(LCC)on a unpretreated PET substrate(crystallinity>40%)by employing iterative saturation mutagenesis.Using this method,we developed a high-throughput screening strategy appropriate for unpretreated substrates.Through extensive screening of residues around the substrate-binding groove,two variants,WCCG-sup1 and WCCG-sup2,showed good depolymerization capabilities with both high-(42%)and low-crystallinity(9%)substrates.The WCCG-sup1 variant completely depolymerized a commercial unpretreated PET product in 36 h at 72℃.In addition to enzyme thermostability and catalytic efficiency,the adsorption of enzymes onto substrates plays an important role in PET degradation.This study provides valuable insights into the structure-function relationship of LCC.
基金financially supported by the Maoming Science and Technology Bureau(No.2022DZXHT007)。
文摘The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.
基金financially supported by the Natural Science Foundation of Jilin Province Science and Technology Department(No.20230101221JC)the National Natural Science Foundation of China(Nos.52173115,52073278,52203189)the Research Foundation for Advanced Talents of Xiamen University of Technology(Nos.5010423019,YKJ22052R)。
文摘It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.
基金This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoalde Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.
基金supported by the National Natural Science Foundation of China(22378338,U22A20421)the Project for Science and Technology Plan of Fujian Province of China(2024H4007)。
文摘Poly(ethylene 2,5-furandicarboxylate)(PEF),a bioplastic synthesized via the polymerization of 2,5-furandicarboxylic acid(FDCA)with ethylene glycol,can be served as a substitute to petroleum-based polyethylene terephthalate(PET)due to its enhanced material properties.However,the fabrication of PEF with stable and desirable properties is still a challenge,largely due to the impurities in FDCA.In this study,a highly efficient purification strategy for FDCA was proposed,utilizing a dioxane/H_(2)O binary solvent system for effective crystallization.Furthermore,PEFs were synthesized from FDCA with varying impurity and the effects of these impurities were systematically characterized.The results revealed that impurities in FDCA could result in PEFs with relatively poor thermal properties.This study provides crucial insights for the impact of impurities on PEF properties and FDCA purification.
基金financially supported by the National Natural Science Foundation of China (No. 21774006)
文摘The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by sulfonation of ASIBS with acetyl sulfate.The hydrophilic ionic channels were generated for proton exchange membranes(PEMs)by ion aggregation of-SO_(3)H groups and microphase separation between hydrophobic polyisobutylene and hydrophilic sulfonated poly(α-methyl styrene)segments in S-ASIBS.The proton transport ability was improved while oxidative stability was decreased by increasing SP in S-ASIBS.The appropriate SP of about 12.7 mol%in S-ASIBS provides the available PEMs with high proton transport ability,low methanol permeability and good oxidative stability.The absence of active tertiary hydrogen atoms along S-ASIBS copolymer chains avoids their attack by peroxy radicals.The residual rates of weight(RW)and proton conductivity(Rσ)of S-ASIBS-12.7 membrane after oxidation treatment for 916 h were 84.3%and 88.1%respectively,near to those of commercial Nafion 117(RW=87.9%,Rσ=90.3%).The membrane electrode assembly(MEA)could be prepared by using various S-ASIBS as PEMs for direct methanol fuel cell.The single cell with S-ASIBS-12.7 MEA behaves high performance of open circuit voltage(OCV)of 548 mV and peak power density(Pmax)of 36.1 mW·cm^(-2),which is similar to those of Nafion 117(OCV=506 mV,P_(max)=35.6 mW·cm^(-2)).To the best of our knowledge,this is the first example of advanced S-ASIBS membrane with high proton conductivity,excellent fuel barrier property and remarkable oxidative stability for promising PEMs.
基金financially supported by the National Natural Science Foundation of China(Nos.22172028,21903015,and 22403017)Natural Science Foundation of Fujian Province of China(No.2022J05041)。
文摘Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.
基金financially supported by the Provincial Project of Science and Technology(No.2023112258)Tianshan Talent Training Program(No.2024TSYCCX0112)+1 种基金Talent Introduction and Start Foundation for Young Scientists of Shihezi University(No.2022ZK004)Program for Young Innovative Talents of Shihezi University(No.CXFZ202302)。
文摘The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources.However,improving the heat resistance and hydrophilicity of bio-based polyesters remains a significant challenge.Herein,we introduce N,N'-trans-1,4-cyclohexane-bis(pyrrolidone-4-methylcarboxylate)(CBPC),a novel bio-based tricyclic dibasic ester synthesized from renewable dimethyl itaconic acid and trans-1,4-cyclohexane diamine via an aza-Michael addition reaction.As a unique comonomer,CBPC features a rigid tricyclic backbone that significantly enhances chain packing and thermal stability,whereas its pyrrolidone side groups impart tunable polarity and improved hydrophilicity.Using CBPC,diphenyl carbonate,and 1,4-butylene glycol,a series of PBCC copolymers with 10 mol%-30 mol%CBPC was synthesized via ester-exchange and melt polycondensation methods.Incorporation of CBPC raised the melting temperature(Tm)from 56.8℃to 225.8℃and the initial decomposition temperature(Td5%)from 258.0℃to 306.7℃,positioning PBCC among the most heat-resistant bio-based polyesters reported.Additionally,the pyrrolidone units enabled transformation from hydrophobic to hydrophilic.This study demonstrates that CBPC is an effective and innovative building block for the design of bio-based polymers with enhanced thermal and surface properties,offering a promising strategy for the development of high-performance sustainable materials.
基金supported by the National Key R&D Program of China(No.2023YFA1506804)the National Natural Science Foundation of China(Nos.22471110,22171111,22131007 and 22071093)+1 种基金the Science Foundation of Gansu Province of China(No.22JR5RA406)the Fundamental Research Funds for the Central Universities(No.lzujbky-2023-15)。
文摘Most commercial plastics cannot easily degrade,which raises a number of sustainability issues.To address the current problem of plastic pollution,the research and development of easily degradable and recyclable polymers has become an attractive subject.Herein,a new monomer of thiosalicylic methyl glycolide(TSMG)was synthesized using one-pot method and high molecular weight poly(thiosalicylic methyl glycolide)(PTSMG,M_(n) up to 300 kDa)can be obtained via the ring-opening polymerization(ROP)of TSMG.PTSMG exhibits good closed-loop recyclability and hydrolytic degradability,where PTSMG can generate pristine monomers through sublimation thermal depolymerization conditions due to the presence of thiophenol ester bond in the polymer chains,and can be degraded rapidly in aqueous solution,which provides a potential solution to the current plastic pollution problem.
基金support from the National Natural Science Foundation of China(Nos.52203026 and 52027804)。
文摘Herein,a simple method for preparing poly(vinylidene fluoride)(PVDF)films with controlledβ/γratios by spin-coating assisted by potassium bromide(KBr)is proposed.The results show that the relative fraction of theβphase(denoted as Fβ)for the films prepared on the KBr surface first decreased until a critical temperature(denoted as Tc)was reached,and then increased with increasing spin-coating temperature.This was related to the dissolved K and Br ions in the films.Further experiments showed that below Tc,high humidity can enhance Fβbut exhibit an adverse effect at and above Tc.The high content of K and Br ions in the PVDF/KBr blend film and larger shear stress can facilitate the formation of theβphase,leading exclusively to the formation ofβ-andγ-phases.The mechanism responsible for the change in Fβwith temperature was proposed:below Tc,the decrease in water intake with increasing temperature results in the decline of Fβ,whereas above Tc,the increase in Fβwith temperature is attributed to the synergistic effect of ions and shear stress.Ultimately,this paves the way for fabricating PVDF films with tailoredβ/γratios for electroactive and energy-harvesting applications.
基金supported by the Nature Science Foundation of Shandong Province,China(Nos.ZR2022MB051 , ZR2021MB112)Science and Technology Bureau of Jinan City(No.2021GXRC105),Postdoctoral Science Foundation of China(No.2022M712343)+1 种基金Jinan City University Integration Development Strategy Project(No.JNSX2024030)a key laboratory of special functional aggregates of the Ministry of Education,Shandong University(No.JT-2023-02).
文摘Fluorescent polyurea-carbon dots(PU-CD) were successfully achieved through a co-pyrolysis technique, combining polyurea(PU) with carboxyl-containing carbon dots(PCD) at a temperature of 220 ℃. The PU was fabricated via a simple precipitation polymerization process using toluene disocyanate in a water/acetone binary solvent system. PCD was generated by thermal treatment of poly(ethylene glycol)(PEG) at the same elevated temperature. To elucidate the structural characteristics of PU-CD, as well as its precursor components PU and PCD, a comprehensive suite of analytical techniques was employed, including transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance(NMR), dynamic light scattering(DLS) and X-ray photoelectron spectroscopy(XPS). These analyses confirmed the formation of amide bonds resulting from the reaction between the terminal amines of PU and the carboxyl groups of PCD. An in-depth comparison of the fluorescence properties of PU-CD revealed marked enhancements in fluorescence intensity when contrasted with PU, PEG, and the individual PCD. The research explored the impact of various factors such as concentration, pH in aqueous solutions, and solvent type on the fluorescence emission of these materials, providing valuable insights into their emission mechanisms. It was particularly noteworthy that both PCD and PU-CD exhibited a confined-domain crosslink-enhanced emission effect. Utilizing the aqueous dispersion of PU-CD as a fluorescent probe,the detection of doxycycline(DOX), a long-acting, broad-spectrum, semi-synthetic tetracycline antibiotic, was achieved with a detection limit of 2.9×10^(-7)mol/L. This study introduces a simple, green, and cost-effective fluorescent probe for the detection of DOX, which has significant potential for application in the realms of analytical chemistry and food safety monitoring in the future.
基金supported by the National Natural Science Foundation of China(No.52222211)“333”Project of Jiangsu Province,and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Considering large volume variation and dissolution issues of some promising electrode materials for chloride ion batteries(CIB),the construction of solid polymer electrolytes(SPE)for efficient chloride ion transport is intriguing.However,this is hindered by low ionic conductivity of chloride SPEs and poor cycling performance of CIBs.Herein,an in-situ polymerized and cross-linked poly(ethylene gly-col)diacrylate-based chloride SPE with a low plasticizer content of succinonitrile is designed,yielding a room-temperature ionic conductivity of 7.6×10^(−5) S cm^(−1),which is higher than that of previously re-ported SPEs for CIBs.Moreover,the use of the asprepared SPE achieves an integrated organic cathode with significantly enhanced rate performance and capacity retention of 96.1%after 100 cycles at room temperature,which is much higher than 49.9%(80 cycles)of the cathode in the CIB with a sandwiched structure.These improved properties are also superior to that of other reported cathodes coupled with different chloride SPEs.The chloride ion transfer mechanism of the cathode is revealed by X-ray photo-electron spectroscopy and energy dispersive spectroscopy.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0101200006)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011926)+1 种基金Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2023B1212060003)State Key Laboratory of Applied Microbiology Southern China(No.SKLAM008-2022)。
文摘The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.24ZR1401400)Shenzhen Salus Bio Med Company for their strong support in this study。
文摘In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was functionalized with dual moieties:azide groups for covalent immobilization of DBCO-modified DNA primers via click chemistry and tunable hydrophilic side chains to optimize biocompatibility and surface properties.Systematic screening revealed that hydrophobic azide carriers combined with neutral hydroxyl groups maximized the DNA immobilization efficacy,approaching the performance of commercial polyacrylamide-based polymers.The negatively charged carboxyl groups severely impede DNA primer attachment.Higher molecular weight derivatives further enhance the efficacy of DNA immobilization.In NGS validation,optimized surface modification polymers achieved robust surface density of clustered DNA and high sequencing accuracy,surpassing quality benchmarks and comparable to those of conventional analogs.This platform demonstrates significant potential for tailoring high-sensitivity surfaces for genomic applications,advancing clinical diagnostics,and personalized medicine.
基金supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of the Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22101088)。
文摘Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.
基金supported by the National Natural Science Foundation of China(Nos.223B2119,U23A2083,52373014,52203129).
文摘The facile synthesis of high-valued polymers from waste molecules or low-cost common chemicals presents a significant challenge.Here,we develop a series of degradable poly(thiocarbonate)s from the new step-growth polymerization of diols,carbonyl sulfide(CoS,or carbon disulfide,CS_(2)),and dichlorides.Diols and dichlorides are common chemicals,and CoS(CS_(2))is released as industrial waste.In addition to abun-dant feedstocks,the method is efficient and performed under mild conditions,using common organic bases as catalysts,and affording unprece-dented polymers.When cos,diols,and dihalides were used as monomers,optimized conditions could completely suppress the oxygen-sulfur exchange reaction,enabling the efficient synthesis of well-defined poly(monothiocarbonate)s with melting points ranging from 48°C to 101°C.These polymers,which have a structure similar to polyethylene with low-density in-chain polar groups,exhibit remarkable toughness and ductili-ty that rival those of high-density polyethylene(melting point:90°C,tensile strength:21.6±0.7 MPa,and elongation at break:576%).Moreover,the obtained poly(monothiocarbonate)s can be chemically degraded by alcoholysis to yield small-molecule diols and dithiols.When CS_(2)was used in place of cos,a pronounced oxygen-sulfur exchange reaction occurred.By optimizing reaction condition,it was found that polymers with-S(C=O)S-and-S(C=S)S-as the main repeating units exhibited high thermal stability and crystallinity.Thus,a new approach for regulat-ing the structure of polythiocarbonates via the oxygen-sulfur exchange reaction is developed.Overall,the polymers hold great potential for green materials due to their facile synthesis,readily available feedstocks,excellent performance,and chemical degradability.
基金supported by the National Natural Science Foundation of China(No.52422302)Anhui Provincial Natural Science Foundation(Nos.2308085UM02,2408055UM001,and 2308085UM04)the Major Science and Technology Project“Unveiling and Commanding”of Hefei City,Anhui Province(No.2022-SZD-005).
文摘The deformation mechanism of glycerol plasticized poly(vinyl alcohol)(PVA)with different hydrolyses(88%,92%,98%)at elevated temperatures(60-100℃)was elucidated by in situ synchrotron radiation X-ray scattering.The vinyl acetate(VAc)in PVA acts as a non-crystalline chain defect,which significantly influences the plastic deformation and stretching-induced crystallization behavior of PVA.The key microstructural parameters of PVA during deformation,such as crystallinity(χ_(c)),lateral crystallite size(L),and long period(l),in combination with the stress-strain curves,were obtained.The experimental results show that the deformation process of the plasticized PVA film present a three-stage evolution:(i)a plastic deformation zone.The plastic deformation of the crystallite occurs as evidenced by the apparent decrease in crystallinity and lamellar reorientation induced by stretching;(ii)the stress softening zone.The decreasing trend of crystallinity becomes slow,and the long period becomes smaller,which indicates that PVA crystallization is induced by stretching;and(iii)the strain-hardening zone.There is a synergistic effect between the crystallite destruction and formation.Further research reveals that a high temperature and low degree of alcoholysis favor the stretching-induced crystallization of PVA,while the system with a high degree of alcoholysis shows significant characteristics of preferred crystal growth.
基金This work was in part supported by the Hong Kong RGC grants HKUST597/95P and HKUST6149/97P.
文摘Two acetylene polymers containing cyanobiphenyl-based mesogens, poly{10-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-decyne} (PA8CN), which has a relatively flexible polyalkyne backbone, and poly {[4-(((12-((4'-cyano-4-biphenylyl)oxy)dodecyl)oxy) carbonyl) phenyl]-acetylene} (PB12CN), which has a fairly rigid poly(phenylacetylene) backbone, were synthesized using respectively WCl6 and [Rh(nbd)Cl](2) as the catalysts. PA8CN exhibits enantiotropic interdigitated smectic A phase (S-Ad) over a temperature range as wide as ca. 100 degrees C, whereas PB12CN is non-mesomorphic, demonstrating that the backbone rigidity plays an important role in determining the liquid crystallinity of the polyacetylenes.
基金financially supported by the National Science Foundation of Zhejiang Province of China (No. LQY19B040001)the fund of Science and Technology Bureau of Jilin Province of China (No. 20170204012SF)+1 种基金the Program of Changchun Science and Technology Bureau (No. 16CX23)National Key Research and Development Program of China (No. 2016YFC0501402-5)
文摘Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied.Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA.The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m^2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m^2),and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%)was higher by about 45 times that of PLA(6.2%).The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA,and the elongation at break(MD/TD)of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%,whereas that of PLA was only 2.7%/3.0%.POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS.With increasing PPCU content from 5%to 20%,the density of spherulite nucleation increased and the size of crystalline particles decreased continuously,but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30%to 40%.The PLA/MBS/PPCU films exhibited excellent mechanical properties,which expanded the application range of these biodegradable films.