All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential ...All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.展开更多
Vacuum membrane distillation technology shows considerable promise for the treatment of mine water. Nevertheless, the current vacuum membrane distillation technology’s significant reliance on a heat source presents a...Vacuum membrane distillation technology shows considerable promise for the treatment of mine water. Nevertheless, the current vacuum membrane distillation technology’s significant reliance on a heat source presents a challenging equilibrium between its energy consumption and thermal efficiency. Consequently, the present study employed computational fluid dynamics (CFD) calculations and analyses to examine the phenomena of temperature-differential polarisation and concentration-differential polarisation generated during the membrane distillation process, and to ascertain the extent to which the operating parameters affect them. Furthermore, it was observed that CPC and TPC exhibited a notable decline with the elevation of feed inlet temperature, while the polarisation phenomenon was diminished with the augmentation of feed inlet flow rate. The optimal equilibrium between membrane flux and thermal efficiency is intimately associated with the operating parameters. Additionally, this study offers a theoretical rationale for the enhancement of vacuum membrane distillation performance.展开更多
When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave ...When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.展开更多
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zo...Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.展开更多
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM te...Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.展开更多
A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information to...A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.展开更多
Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space...Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.展开更多
Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results...Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.展开更多
The ferroelectric polarization and phase diagram in Tm-doped Gd MnO3 are studied by means of Monte Carlo simulation based on the Mochizuki–Furukawa model. Our work well reproduces the low temperature polarization at ...The ferroelectric polarization and phase diagram in Tm-doped Gd MnO3 are studied by means of Monte Carlo simulation based on the Mochizuki–Furukawa model. Our work well reproduces the low temperature polarization at various substitution levels observed experimentally. It is demonstrated that the Tm-doping can control the multiferroic behaviors through modulating the spin structures, resulting in the flop of the electric polarization. In addition, the polarization in the ab-plane cycloidal spin phase arises from comparable contributions of the symmetric exchange striction and antisymmetric exchange striction, leading to much bigger polarization than that in the bc-plane cycloidal spin phase where only the contribution of the latter striction is available. The phase diagram obtained in our simulation is helpful for clarifying the multiferroic properties in doped manganite systems and other related multiferroics.展开更多
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The ...A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba eoefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.展开更多
Energetic X-ray radiations emitted from various accretion systems are widely considered to be produced by Comptonization in the hot corona.The corona and its interaction with the disk play an essential role in the evo...Energetic X-ray radiations emitted from various accretion systems are widely considered to be produced by Comptonization in the hot corona.The corona and its interaction with the disk play an essential role in the evolution of the system and are potentially responsible for many observed features.However,many intrinsic properties of the corona are still poorly understood,especially for the geometrical configurations.The traditional spectral fitting method is not powerful enough to distinguish various configurations.In this paper,we intend to investigate the possible configurations by modeling the polarization properties of X-ray radiations.The geometries of the corona include the slab,sphere and cylinder.The simulations are implemented through the publicly available code,Lemon,which can deal with the polarized radiative transfer and different electron distributions readily.The results demonstrate clearly that the observed polarizations are dependent heavily on the geometry of the corona.The slab-like corona produces the highest polarization degrees(PDs),followed by the cylinder and sphere.One of the interesting things is that the PDs first increase gradually and then decrease with the increase of photon energy.For slab geometry,there exists a zero-point where the polarization vanishes and the polarization angle(PA)rotates by 90°.These results may potentially be verified by the upcoming missions for polarized X-ray observations,such as IXPE and e XTP.展开更多
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy...To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.展开更多
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circula...In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.展开更多
We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple...We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers n of the subsequent orders of scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution, due to the suppression of the n-dependency in the energy mo-mentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This con-tribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2) breaking of the axially symmetric configuration into a discrete subgroup of rotations about 180°. The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2) symmetry, triggers the pressure Tzz for discrete values of the azimuthal-angle. There can be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and can be an evidence for the existence of cosmic strings. The discovery of the increase of polarization rate in smaller subgroups of the several large-quasar groups (LQGs), the red shift dependency and the relative orientation of the spin axes with respect to the major axes of their host LQGs, point at a fractional azimuthal structure, were also found in our cosmic string model. This peculiar discontinuous large scale structure, i.e., polarizations directions of multiples of, for example, π/2 orπ/4, can be explained by the spectrum of azimuthal-angle dependent wavelike modes without the need of conventional density perturbations in standard 4D cosmological models. Carefully com-parison of the spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available.展开更多
To achieve total angular momentum conservation is highly nontrivial in constructing transport models when the spin-orbit interactions are not negligible.In our recent works[1,2],we have developed the first transport m...To achieve total angular momentum conservation is highly nontrivial in constructing transport models when the spin-orbit interactions are not negligible.In our recent works[1,2],we have developed the first transport model that rigorously respects this fundamental conservation law by carefully including the side-jump effect[3,4]caused by spin-orbit interactions.展开更多
The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings,...The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don’t fade away during the expansion of the universe. From a nonlinear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a “back-reaction” term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order for the metric components and scalar-gauge fields contain -dependent terms, so the approximate wave solutions are no longer axially symmetric. The disturbances, amplified by the warp factor, can possess extremal values for fixed polar angles. This could explain the two preferred polarization vectors mod .展开更多
In cutting-edge optical technologies,polarization is a key for encoding and transmitting vast information,highlighting the importance of selectively switching and modulating polarized light.Recently,anisotropic two-di...In cutting-edge optical technologies,polarization is a key for encoding and transmitting vast information,highlighting the importance of selectively switching and modulating polarized light.Recently,anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals,but face challenges with low polarization ratios and limited spectral ranges.Here,we apply strain to quasi-one-dimensional layered ZrSe_(3)to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching.Initially,transient absorption on unstrained ZrSe_(3)reveals a sub-picosecond switching response in polarization along a specific crystal axis,attributed to shifting-recovery dynamics of an anisotropic exciton.However,its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization.To overcome this limitation,we apply strain to ZrSe_(3)by bending its flexible substrate.The compressive strain spectrally decouples the excitonic and nonexcitonic components,doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe_(3).It also effectively tunes the switching energy at a shift rate of~93 meV%-1.This strain-tunable switching is repeatable,reversible,and robustly maintains the sub-picosecond operation.First-principles calculations reveal that the strain control is enabled by momentum-and band-dependent modulations of the electronic band structure,causing opposite shifts in the excitonic and non-excitonic transitions.Our findings offer a novel approach for high-performance,wavelength-tunable,polarization-selective ultrafast optical switching.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000002)the National Natural Science Foundation of China(No.52206089)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515010288,2023B1515120005)the Natural Science Foundation of Shenzhen(JCYJ20230807093315033)the Shenzhen Engineering Research Center,Southern University of Science and Technology(No.XMHT20230208003)high level of special funds(G03034K001)。
文摘All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.
文摘Vacuum membrane distillation technology shows considerable promise for the treatment of mine water. Nevertheless, the current vacuum membrane distillation technology’s significant reliance on a heat source presents a challenging equilibrium between its energy consumption and thermal efficiency. Consequently, the present study employed computational fluid dynamics (CFD) calculations and analyses to examine the phenomena of temperature-differential polarisation and concentration-differential polarisation generated during the membrane distillation process, and to ascertain the extent to which the operating parameters affect them. Furthermore, it was observed that CPC and TPC exhibited a notable decline with the elevation of feed inlet temperature, while the polarisation phenomenon was diminished with the augmentation of feed inlet flow rate. The optimal equilibrium between membrane flux and thermal efficiency is intimately associated with the operating parameters. Additionally, this study offers a theoretical rationale for the enhancement of vacuum membrane distillation performance.
基金supported by International Science and Technology Cooperation Program of China(2010DFB20190)National Natural Science Foundation of China(41040034 and 41174042)the support by basic research project of Institute of Earthquake Science,China Earthquake Administration(2009IES0211)
文摘When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.
文摘Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
基金National Natural Science Foundation of China (40274011).
文摘Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
文摘A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304093 and 11274114)the Hubei Provincial Natural Science Foundation,China(Grant No.2018CFB320)the Academic Discipline Project of Hubei Normal University,China(Grant Nos.2014F012 and 2014F013).
文摘Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Natural Science Foundation of Jilin Province,China(Grant No.20180101225JC)
文摘Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204091,11274094,and 51332007)the National Basic Research Program of China(Grant Nos.2015CB921202 and 2011CB922101)
文摘The ferroelectric polarization and phase diagram in Tm-doped Gd MnO3 are studied by means of Monte Carlo simulation based on the Mochizuki–Furukawa model. Our work well reproduces the low temperature polarization at various substitution levels observed experimentally. It is demonstrated that the Tm-doping can control the multiferroic behaviors through modulating the spin structures, resulting in the flop of the electric polarization. In addition, the polarization in the ab-plane cycloidal spin phase arises from comparable contributions of the symmetric exchange striction and antisymmetric exchange striction, leading to much bigger polarization than that in the bc-plane cycloidal spin phase where only the contribution of the latter striction is available. The phase diagram obtained in our simulation is helpful for clarifying the multiferroic properties in doped manganite systems and other related multiferroics.
基金Supported by the National Science Foundation of China under Grant No.2006CB921605
文摘A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba eoefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.
基金the National Natural Science Foundation of China(NSFC,Grant Nos.U2031111,11573060,12073069,11661161010 and 11673060)。
文摘Energetic X-ray radiations emitted from various accretion systems are widely considered to be produced by Comptonization in the hot corona.The corona and its interaction with the disk play an essential role in the evolution of the system and are potentially responsible for many observed features.However,many intrinsic properties of the corona are still poorly understood,especially for the geometrical configurations.The traditional spectral fitting method is not powerful enough to distinguish various configurations.In this paper,we intend to investigate the possible configurations by modeling the polarization properties of X-ray radiations.The geometries of the corona include the slab,sphere and cylinder.The simulations are implemented through the publicly available code,Lemon,which can deal with the polarized radiative transfer and different electron distributions readily.The results demonstrate clearly that the observed polarizations are dependent heavily on the geometry of the corona.The slab-like corona produces the highest polarization degrees(PDs),followed by the cylinder and sphere.One of the interesting things is that the PDs first increase gradually and then decrease with the increase of photon energy.For slab geometry,there exists a zero-point where the polarization vanishes and the polarization angle(PA)rotates by 90°.These results may potentially be verified by the upcoming missions for polarized X-ray observations,such as IXPE and e XTP.
基金Supported by the National Natural Science Foundation of China(No.10874096)
文摘To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.
基金support by National Natural Science Foundation of China(Nos.11674128,11674124 and 11974138)Scientific and Technological Research Project of the Education Department of Jilin Province in China(No.JJKH20200937KJ).
文摘In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.
文摘We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1) scalar gauge field (cosmic string) on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers n of the subsequent orders of scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution, due to the suppression of the n-dependency in the energy mo-mentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This con-tribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2) breaking of the axially symmetric configuration into a discrete subgroup of rotations about 180°. The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2) symmetry, triggers the pressure Tzz for discrete values of the azimuthal-angle. There can be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and can be an evidence for the existence of cosmic strings. The discovery of the increase of polarization rate in smaller subgroups of the several large-quasar groups (LQGs), the red shift dependency and the relative orientation of the spin axes with respect to the major axes of their host LQGs, point at a fractional azimuthal structure, were also found in our cosmic string model. This peculiar discontinuous large scale structure, i.e., polarizations directions of multiples of, for example, π/2 orπ/4, can be explained by the spectrum of azimuthal-angle dependent wavelike modes without the need of conventional density perturbations in standard 4D cosmological models. Carefully com-parison of the spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available.
基金One thousand program of China,US Department of Energy(DE-SC0015266)Welch Foundation(A-1358)。
文摘To achieve total angular momentum conservation is highly nontrivial in constructing transport models when the spin-orbit interactions are not negligible.In our recent works[1,2],we have developed the first transport model that rigorously respects this fundamental conservation law by carefully including the side-jump effect[3,4]caused by spin-orbit interactions.
文摘The recently discovered alignment of quasar polarizations on very large scales could possibly be explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don’t fade away during the expansion of the universe. From a nonlinear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a “back-reaction” term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order for the metric components and scalar-gauge fields contain -dependent terms, so the approximate wave solutions are no longer axially symmetric. The disturbances, amplified by the warp factor, can possess extremal values for fixed polar angles. This could explain the two preferred polarization vectors mod .
基金supported by the National Research Foundation of Korea(NRF)through the government of Korea(MSIP)(Grant NRF-2022R1C1C1003124)funded by grants from the National Research Foundation of Korea(2022M3H9A2096197)the Korea Basic Science Institute(A439200).
文摘In cutting-edge optical technologies,polarization is a key for encoding and transmitting vast information,highlighting the importance of selectively switching and modulating polarized light.Recently,anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals,but face challenges with low polarization ratios and limited spectral ranges.Here,we apply strain to quasi-one-dimensional layered ZrSe_(3)to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching.Initially,transient absorption on unstrained ZrSe_(3)reveals a sub-picosecond switching response in polarization along a specific crystal axis,attributed to shifting-recovery dynamics of an anisotropic exciton.However,its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization.To overcome this limitation,we apply strain to ZrSe_(3)by bending its flexible substrate.The compressive strain spectrally decouples the excitonic and nonexcitonic components,doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe_(3).It also effectively tunes the switching energy at a shift rate of~93 meV%-1.This strain-tunable switching is repeatable,reversible,and robustly maintains the sub-picosecond operation.First-principles calculations reveal that the strain control is enabled by momentum-and band-dependent modulations of the electronic band structure,causing opposite shifts in the excitonic and non-excitonic transitions.Our findings offer a novel approach for high-performance,wavelength-tunable,polarization-selective ultrafast optical switching.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.