BACKGROUND Sarcoidosis is a rare multisystem disease characterized histologically by noncaseating granuloma formation in the affected organ.While cardiac sarcoidosis is found on autopsy in up to 25%of sarcoidosis case...BACKGROUND Sarcoidosis is a rare multisystem disease characterized histologically by noncaseating granuloma formation in the affected organ.While cardiac sarcoidosis is found on autopsy in up to 25%of sarcoidosis cases,it is still underdiagnosed and is associated with a poor prognosis.Although the etiology of sarcoidosis remains unclear,an antigen triggered exaggerated immune response has been hypothesized.Early detection and prompt management of cardiac sarcoidosis remains pivotal.CASE SUMMARY A 60-year-old female,with pulmonary sarcoidosis in remission,presented to the cardiology outpatient clinic for evaluation of weeks-long dyspnea on moderate exertion(New York Heart Association class II)that was relieved by rest.Submaximal exercise stress test showed multifocal ventricular extrasystoles,followed by a self-limiting torsades de pointes.Cardiac magnetic resonance imaging showed nondilated and normotrophic left ventricle with basoseptal and mid-septal dyskinesis.The magnetic resonance imaging-derived left ventricular ejection fraction was 45%.Delayed enhancement showed patchy transmural fibrosis of the septum and hyperenhancement of the papillary muscles,all in favor of extensive cardiac involvement of sarcoidosis.A double-chamber implantable cardiac defibrillator was implanted,and methylprednisolone(12 mg/d)and methotrexate(12.5 mg/wk)treatment was initiated.Follow-up and implantable cardiac defibrillator interrogation showed episodes of asymptomatic nonsustained ventricular tachycardia and an asymptomatic episode of nonsustained ventricular tachycardia ending by the first antitachycardia pacing run.CONCLUSION Along an extensive review of the literature,this unusual case report highlights the importance of early detection of cardiac involvement of sarcoidosis,in order to avoid potential complications and increase survival.展开更多
BACKGROUND QT interval prolongation can induce torsades de pointes(TdP),a potentially fatal ventricular arrhythmia.Recently,an increasing number of non-cardiac drugs have been found to cause QT prolongation and/or TdP...BACKGROUND QT interval prolongation can induce torsades de pointes(TdP),a potentially fatal ventricular arrhythmia.Recently,an increasing number of non-cardiac drugs have been found to cause QT prolongation and/or TdP onset.Moreover,recent findings have demonstrated the key roles of systemic inflammatory activation and fever in promoting long-QT syndrome(LQTS)and TdP development.CASE SUMMARY A 30-year-old woman was admitted with a moderate to high-grade episodic fever for two weeks.The patient was administered with multiple antibiotics after hospitalization but still had repeating fever and markedly elevated C-reactive protein.Once after a high fever,the patient suddenly lost consciousness,and electrocardiogram(ECG)showed transient TdP onset after frequent premature ventricular contraction.The patient recovered sinus rhythm and consciousness spontaneously,and post-TdP ECG revealed a prolonged QTc interval of 560 ms.The patient’s clinical manifestations and unresponsiveness to the antibiotics led to the final diagnosis of adult-onset Still’s disease(AOSD).There was no evidence of cardiac involvement.After the AOSD diagnosis,discontinuation of antibiotics and immediate initiation of intravenous dexamethasone administration resulted in the normal temperature and QTc interval.The genetic analysis identified that the patient and her father had heterozygous mutations in KCNH2(c.1370C>T)and AKAP9(c.7725A>C).During the 2-year follow-up period,the patient had no recurrence of any arrhythmia and maintained normal QTc interval.CONCLUSION This case study highlights the risk of systemic inflammatory activation and antibiotic-induced TdP/LQTS onset.Genetic analysis should be considered to identify individuals at high risk of developing TdP.展开更多
Abstract: Loperamide is a common, over-the-counter, antidiarrheal medication that has been implicated in cases of ventricular tachycardia. A 32 year-old female patient with a history of opioid abuse and no prior hist...Abstract: Loperamide is a common, over-the-counter, antidiarrheal medication that has been implicated in cases of ventricular tachycardia. A 32 year-old female patient with a history of opioid abuse and no prior history of cardiovascular disease experienced Torsades de pointes. An electrocardiogram at the time of hospital presentation revealed a prolonged QT interval at 636 msec. Diagnostic evaluation was unremarkable for any underlying cardiovascular pathology. Further investigation revealed the patient had been taking 30-40 loperamide 2 mg tablets oral daily for 2 weeks prior to the onset of Torsades de pointes. At high doses, loperamide may prolong the QT interval through antagonism of the human ether-a-go-go potassium current, thus increasing the risk of ventricular arrhythmias. Clinicians should be cautious with administration of high doses of loperamide to all patients, especially patients at high risk for QT interval prolongation.展开更多
Background Torsade de pointes (TdP) is a form of polymorphic ventricular tachycardia featuring prolonged QT intervals. Female gender is associated with an increased risk of TdP. However, the causes of the sex differe...Background Torsade de pointes (TdP) is a form of polymorphic ventricular tachycardia featuring prolonged QT intervals. Female gender is associated with an increased risk of TdP. However, the causes of the sex difference in risk are poorly understood. Recently, transmural dispersion of repolarization (TDR) has been implicated in the genesis of TdP. Consequently, we compared TdP incidence and TDR between male and female rabbit hearts in order to investigate the mechanism of sex difference in TdP risk in rabbits in vitro. Methods By means of monophasic action potential recording techniques, the monophasic action potential of the epicardium, midmyocardium, and endocardium were simultaneously recorded using specially designed plunge-needle electrodes placed across the left ventricular free wall of both female (n=8) and male (n=8) rabbit hearts purfused by the Langendorff method. TdP was induced by bradycardia, d-sotalol, and low-K +, Mg 2+ Tyrode solution. Results TDR measurements in all three myocardial layers of male and female rabbit hearts were (18±2) ms and (21±2) ms, respectively (n=8, P>0.05). After perfusion with d-sotalol, the 90% monophasic action potential duration was prolonged in both male and femlae rabbits. TDR in male and female rabbit hearts increased to (29±2) ms and (61±2) ms, respectively, a difference that is significant. Eight female rabbit hearts had early afterdepolarization and 7 of them developed TdP. Seven male rabbit hearts had early after depolarization, but only one of these hearts developed TdP.Conclusion Greater TDR may play an important role in the higher incidence of TdP in female rabbit hearts.展开更多
Neuromodulation techniques effectively intervene in cognitive function,holding considerable scientific and practical value in fields such as aerospace,medicine,life sciences,and brain research.These techniques utilize...Neuromodulation techniques effectively intervene in cognitive function,holding considerable scientific and practical value in fields such as aerospace,medicine,life sciences,and brain research.These techniques utilize electrical stimulation to directly or indirectly target specific brain regions,modulating neural activity and influencing broader brain networks,thereby regulating cognitive function.Regulating cognitive function involves an understanding of aspects such as perception,learning and memory,attention,spatial cognition,and physical function.To enhance the application of cognitive regulation in the general population,this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions.This review covers various neuromodulation techniques for cognitive intervention,including deep brain stimulation,vagus nerve stimulation,and invasive methods using microelectrode arrays.The non-invasive techniques discussed include transcranial magnetic stimulation,transcranial direct current stimulation,transcranial alternating current stimulation,transcutaneous electrical acupoint stimulation,and time interference stimulation for activating deep targets.Invasive stimulation methods,which are ideal for studying the pathogenesis of neurological diseases,tend to cause greater trauma and have been less researched in the context of cognitive function regulation.Non-invasive methods,particularly newer transcranial stimulation techniques,are gentler and more appropriate for regulating cognitive functions in the general population.These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets.This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology.It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation.Additionally,researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.展开更多
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Associ...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address t...Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address this issue,this paper proposes a real⁃time BDS⁃3 precise unidirectional timing model based on uncombined(UC)observations using the BDS⁃3 PPP⁃B2b service.This model resolves the challenge of the amplified observation noise inherent in the IF combination model.The experiment involved selecting eight global navigation satellite system(GNSS)observation stations within China and collecting continuous observation data for 15 d.A comparative analy⁃sis with the traditional dual⁃frequency IF combination PPP timing model showed that the BDS⁃3 UC PPP timing based on the BDS⁃3 PPP⁃B2b service can achieve a timing preci⁃sion of 0.5 ns.In addition,it was found that due to global positioning system(GPS)satellite clock products in the BDS⁃3 PPP⁃B2b service not being unified to the standard time,the GPS IF PPP timing method based on the BDS⁃3 PPP⁃B2b service is not recommended for precise timing.In summary,the BDS⁃3 UC PPP timing model proposed in this paper is suitable for precise timing,providing observa⁃tion values with smaller noise,and its timing accuracy is comparable to that of the BDS⁃3 IF PPP,with slightly better frequency stability.展开更多
Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.Thi...Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Associat...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps i...Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.展开更多
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma...Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.展开更多
Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interan...Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.展开更多
洛普替尼(repotrectinib)是由Turning Point Therapeutics公司研发,于2023年11月15日经美国食品药品监督管理局(FDA)批准上市,商品名为Augtyro。洛普替尼是一种多靶点激酶抑制剂,可以靶向ROS1、TRK和ALK,适用于治疗局部晚期或转移性ROS...洛普替尼(repotrectinib)是由Turning Point Therapeutics公司研发,于2023年11月15日经美国食品药品监督管理局(FDA)批准上市,商品名为Augtyro。洛普替尼是一种多靶点激酶抑制剂,可以靶向ROS1、TRK和ALK,适用于治疗局部晚期或转移性ROS1阳性非小细胞肺癌(non-small cell lung cancer,NSCLC)成人患者[1]。展开更多
Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstandin...Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstanding advantages in situational awareness and series of optimization problems.The precondition of obtaining accurate PDSR boundary is to locate sufficient points around the boundary(critical points).Therefore,this paper proposes a space division and Wasserstein generative adversarial network with gra-dient penalty(WGAN-GP)based fast generation method of PDSR boundary.First,the typical differential topological characterizations of dynamic security region(DSR)provide strong theoretical foundation that the interior of DSR is hole-free and the boundaries of DSR are tight and knot-free.Then,the space division method is proposed to calculate critical operation area where the PDSR boundary is located,tremen-dously compressing the search space to locate critical points and improving the confidence level of boundary fitting result.Furthermore,the WGAN-GP model is utilized to fast obtain large number of criti-cal points based on learning the data distribution of the small training set aforementioned.Finally,the PDSR boundary with hyperplanes is fitted by the least square method.The case study is tested on the Institute of Electrical and Electronics Engineers(IEEE)39-bus system and the results verify the accuracy and efficiency of the proposed method.展开更多
Zenith Tropospheric Delay(ZTD)is an important factor that restricts the high-precision positioning of global navigation satellite system(GNSS),and it is of great significance in establishing a real-time and highprecis...Zenith Tropospheric Delay(ZTD)is an important factor that restricts the high-precision positioning of global navigation satellite system(GNSS),and it is of great significance in establishing a real-time and highprecision ZTD model.However,existing ZTD models only consider the impact of linear terms on ZTD estimation,whereas the nonlinear factors have rarely been investigated before and thus become the focus of this study.A real-time and high-precision ZTD model for large height difference area is proposed by considering the linear and nonlinear characteristics of ZTD spatiotemporal variations and is called the realtime linear and nonlinearity ZTD(RLNZ)model.This model uses the ZTD estimated from the Global Pressure and Temperature 3(GPT3)model as the initial value.The linear impacts of periodic term and height on the estimation of ZTD difference between GNSS and GPT3 model are first considered.In addition,nonlinear factors such as geographical location and time are further used to fit the remaining nonlinear ZTD residuals using the general regression neural network method.Finally,the RLNZ-derived ZTD is obtained at an arbitrary location.The western United States,with height difference ranging from-500 to 4000 m,is selected,and the hourly ZTD of 484 GNSS stations provided by the Nevada Geodetic Laboratory(NGL)and the data of 9 radiosonde(RS)stations in the year 2021 are used.Experiment results show that a better performance of ZTD estimation can be retrieved from the proposed RLNZ model when compared with the GPT3 model.Statistical results show the averaged root mean square(RMS),Bias,and mean absolute error(MAE)of ZTD from GPT3 and RLNZ models are 33.7/0.8/25.7 mm and 22.6/0.1/17.4 mm,respectively.The average improvement rate of the RLNZ model is 33% when compared to the GPT3 model.Finally,the application of the proposed RLNZ model in simulated real-time Precise Point Positioning(PPP)indicates that the accuracy of PPP in N,E and U components is improved by 8%,2%,and 6% when compared with that from the GPT3-based PPP.Meanwhile,the convergence time in N and U components is improved by 23% and 7%,respectively.Such results verify the superiority of the proposed RLNZ model in retrieving realtime ZTD maps for GNSS positioning and navigation applications.展开更多
文摘BACKGROUND Sarcoidosis is a rare multisystem disease characterized histologically by noncaseating granuloma formation in the affected organ.While cardiac sarcoidosis is found on autopsy in up to 25%of sarcoidosis cases,it is still underdiagnosed and is associated with a poor prognosis.Although the etiology of sarcoidosis remains unclear,an antigen triggered exaggerated immune response has been hypothesized.Early detection and prompt management of cardiac sarcoidosis remains pivotal.CASE SUMMARY A 60-year-old female,with pulmonary sarcoidosis in remission,presented to the cardiology outpatient clinic for evaluation of weeks-long dyspnea on moderate exertion(New York Heart Association class II)that was relieved by rest.Submaximal exercise stress test showed multifocal ventricular extrasystoles,followed by a self-limiting torsades de pointes.Cardiac magnetic resonance imaging showed nondilated and normotrophic left ventricle with basoseptal and mid-septal dyskinesis.The magnetic resonance imaging-derived left ventricular ejection fraction was 45%.Delayed enhancement showed patchy transmural fibrosis of the septum and hyperenhancement of the papillary muscles,all in favor of extensive cardiac involvement of sarcoidosis.A double-chamber implantable cardiac defibrillator was implanted,and methylprednisolone(12 mg/d)and methotrexate(12.5 mg/wk)treatment was initiated.Follow-up and implantable cardiac defibrillator interrogation showed episodes of asymptomatic nonsustained ventricular tachycardia and an asymptomatic episode of nonsustained ventricular tachycardia ending by the first antitachycardia pacing run.CONCLUSION Along an extensive review of the literature,this unusual case report highlights the importance of early detection of cardiac involvement of sarcoidosis,in order to avoid potential complications and increase survival.
基金the Beijing Key Clinical Subject Program and Beijing Municipal Administration of Hospitals Incubating Program,No.PX2018002.
文摘BACKGROUND QT interval prolongation can induce torsades de pointes(TdP),a potentially fatal ventricular arrhythmia.Recently,an increasing number of non-cardiac drugs have been found to cause QT prolongation and/or TdP onset.Moreover,recent findings have demonstrated the key roles of systemic inflammatory activation and fever in promoting long-QT syndrome(LQTS)and TdP development.CASE SUMMARY A 30-year-old woman was admitted with a moderate to high-grade episodic fever for two weeks.The patient was administered with multiple antibiotics after hospitalization but still had repeating fever and markedly elevated C-reactive protein.Once after a high fever,the patient suddenly lost consciousness,and electrocardiogram(ECG)showed transient TdP onset after frequent premature ventricular contraction.The patient recovered sinus rhythm and consciousness spontaneously,and post-TdP ECG revealed a prolonged QTc interval of 560 ms.The patient’s clinical manifestations and unresponsiveness to the antibiotics led to the final diagnosis of adult-onset Still’s disease(AOSD).There was no evidence of cardiac involvement.After the AOSD diagnosis,discontinuation of antibiotics and immediate initiation of intravenous dexamethasone administration resulted in the normal temperature and QTc interval.The genetic analysis identified that the patient and her father had heterozygous mutations in KCNH2(c.1370C>T)and AKAP9(c.7725A>C).During the 2-year follow-up period,the patient had no recurrence of any arrhythmia and maintained normal QTc interval.CONCLUSION This case study highlights the risk of systemic inflammatory activation and antibiotic-induced TdP/LQTS onset.Genetic analysis should be considered to identify individuals at high risk of developing TdP.
文摘Abstract: Loperamide is a common, over-the-counter, antidiarrheal medication that has been implicated in cases of ventricular tachycardia. A 32 year-old female patient with a history of opioid abuse and no prior history of cardiovascular disease experienced Torsades de pointes. An electrocardiogram at the time of hospital presentation revealed a prolonged QT interval at 636 msec. Diagnostic evaluation was unremarkable for any underlying cardiovascular pathology. Further investigation revealed the patient had been taking 30-40 loperamide 2 mg tablets oral daily for 2 weeks prior to the onset of Torsades de pointes. At high doses, loperamide may prolong the QT interval through antagonism of the human ether-a-go-go potassium current, thus increasing the risk of ventricular arrhythmias. Clinicians should be cautious with administration of high doses of loperamide to all patients, especially patients at high risk for QT interval prolongation.
文摘Background Torsade de pointes (TdP) is a form of polymorphic ventricular tachycardia featuring prolonged QT intervals. Female gender is associated with an increased risk of TdP. However, the causes of the sex difference in risk are poorly understood. Recently, transmural dispersion of repolarization (TDR) has been implicated in the genesis of TdP. Consequently, we compared TdP incidence and TDR between male and female rabbit hearts in order to investigate the mechanism of sex difference in TdP risk in rabbits in vitro. Methods By means of monophasic action potential recording techniques, the monophasic action potential of the epicardium, midmyocardium, and endocardium were simultaneously recorded using specially designed plunge-needle electrodes placed across the left ventricular free wall of both female (n=8) and male (n=8) rabbit hearts purfused by the Langendorff method. TdP was induced by bradycardia, d-sotalol, and low-K +, Mg 2+ Tyrode solution. Results TDR measurements in all three myocardial layers of male and female rabbit hearts were (18±2) ms and (21±2) ms, respectively (n=8, P>0.05). After perfusion with d-sotalol, the 90% monophasic action potential duration was prolonged in both male and femlae rabbits. TDR in male and female rabbit hearts increased to (29±2) ms and (61±2) ms, respectively, a difference that is significant. Eight female rabbit hearts had early afterdepolarization and 7 of them developed TdP. Seven male rabbit hearts had early after depolarization, but only one of these hearts developed TdP.Conclusion Greater TDR may play an important role in the higher incidence of TdP in female rabbit hearts.
基金supported by STI 2030-Major Projects,No.2021ZD0201603(to JL)the Joint Foundation Program of the Chinese Academy of Sciences,No.8091A170201(to JL)+1 种基金the National Natural Science Foundation of China,Nos.T2293730(to XC),T2293731(to XC),T2293734(to XC),62471291(to YW),62121003(to XC),61960206012(to XC),62333020(to XC),and 62171434(to XC)the National Key Research and Development Program of China,Nos.2022YFC2402501(to XC),2022YFB3205602(to XC).
文摘Neuromodulation techniques effectively intervene in cognitive function,holding considerable scientific and practical value in fields such as aerospace,medicine,life sciences,and brain research.These techniques utilize electrical stimulation to directly or indirectly target specific brain regions,modulating neural activity and influencing broader brain networks,thereby regulating cognitive function.Regulating cognitive function involves an understanding of aspects such as perception,learning and memory,attention,spatial cognition,and physical function.To enhance the application of cognitive regulation in the general population,this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions.This review covers various neuromodulation techniques for cognitive intervention,including deep brain stimulation,vagus nerve stimulation,and invasive methods using microelectrode arrays.The non-invasive techniques discussed include transcranial magnetic stimulation,transcranial direct current stimulation,transcranial alternating current stimulation,transcutaneous electrical acupoint stimulation,and time interference stimulation for activating deep targets.Invasive stimulation methods,which are ideal for studying the pathogenesis of neurological diseases,tend to cause greater trauma and have been less researched in the context of cognitive function regulation.Non-invasive methods,particularly newer transcranial stimulation techniques,are gentler and more appropriate for regulating cognitive functions in the general population.These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets.This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology.It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation.Additionally,researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
基金The Basic Science Center Project of the National Natural Science Foundation of China(No.42388102)the Jiangsu Province Natural Resources Science and Technology Project(No.JSZRKJ202404).
文摘Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address this issue,this paper proposes a real⁃time BDS⁃3 precise unidirectional timing model based on uncombined(UC)observations using the BDS⁃3 PPP⁃B2b service.This model resolves the challenge of the amplified observation noise inherent in the IF combination model.The experiment involved selecting eight global navigation satellite system(GNSS)observation stations within China and collecting continuous observation data for 15 d.A comparative analy⁃sis with the traditional dual⁃frequency IF combination PPP timing model showed that the BDS⁃3 UC PPP timing based on the BDS⁃3 PPP⁃B2b service can achieve a timing preci⁃sion of 0.5 ns.In addition,it was found that due to global positioning system(GPS)satellite clock products in the BDS⁃3 PPP⁃B2b service not being unified to the standard time,the GPS IF PPP timing method based on the BDS⁃3 PPP⁃B2b service is not recommended for precise timing.In summary,the BDS⁃3 UC PPP timing model proposed in this paper is suitable for precise timing,providing observa⁃tion values with smaller noise,and its timing accuracy is comparable to that of the BDS⁃3 IF PPP,with slightly better frequency stability.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1C1C1004107)。
文摘Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
基金National Natural Science Foundation of China(No.42301518)Hubei Key Laboratory of Regional Development and Environmental Response(No.2023(A)002)Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources(Ministry of Education)(No.TDSYS202304).
文摘Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the National Natural Science Foundation of China(Grant Nos.42461160266 and 52379106).
文摘Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.
基金supported by the European Union as a mobility grant
文摘Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.
基金funded in part by the National Key Research and Development Program of China(2020YFB0905900)in part by Science and Technology Project of State Grid Corporation of China(SGCC)The Key Technologies for Electric Internet of Things(SGTJDK00DWJS2100223).
文摘Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstanding advantages in situational awareness and series of optimization problems.The precondition of obtaining accurate PDSR boundary is to locate sufficient points around the boundary(critical points).Therefore,this paper proposes a space division and Wasserstein generative adversarial network with gra-dient penalty(WGAN-GP)based fast generation method of PDSR boundary.First,the typical differential topological characterizations of dynamic security region(DSR)provide strong theoretical foundation that the interior of DSR is hole-free and the boundaries of DSR are tight and knot-free.Then,the space division method is proposed to calculate critical operation area where the PDSR boundary is located,tremen-dously compressing the search space to locate critical points and improving the confidence level of boundary fitting result.Furthermore,the WGAN-GP model is utilized to fast obtain large number of criti-cal points based on learning the data distribution of the small training set aforementioned.Finally,the PDSR boundary with hyperplanes is fitted by the least square method.The case study is tested on the Institute of Electrical and Electronics Engineers(IEEE)39-bus system and the results verify the accuracy and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(42274039)Shaanxi Provincial Innovation Capacity Support Plan Project(2023KJXX-050)+2 种基金The Open Grants of the State Key Laboratory of Severe Weather(2023LASW-B18)Scientific and technological research projects for major issues in military medicine and aviation medicine(2022ZZXM012)Local special scientific research plan project of Shaanxi Provincial Department of Education(22JE012)。
文摘Zenith Tropospheric Delay(ZTD)is an important factor that restricts the high-precision positioning of global navigation satellite system(GNSS),and it is of great significance in establishing a real-time and highprecision ZTD model.However,existing ZTD models only consider the impact of linear terms on ZTD estimation,whereas the nonlinear factors have rarely been investigated before and thus become the focus of this study.A real-time and high-precision ZTD model for large height difference area is proposed by considering the linear and nonlinear characteristics of ZTD spatiotemporal variations and is called the realtime linear and nonlinearity ZTD(RLNZ)model.This model uses the ZTD estimated from the Global Pressure and Temperature 3(GPT3)model as the initial value.The linear impacts of periodic term and height on the estimation of ZTD difference between GNSS and GPT3 model are first considered.In addition,nonlinear factors such as geographical location and time are further used to fit the remaining nonlinear ZTD residuals using the general regression neural network method.Finally,the RLNZ-derived ZTD is obtained at an arbitrary location.The western United States,with height difference ranging from-500 to 4000 m,is selected,and the hourly ZTD of 484 GNSS stations provided by the Nevada Geodetic Laboratory(NGL)and the data of 9 radiosonde(RS)stations in the year 2021 are used.Experiment results show that a better performance of ZTD estimation can be retrieved from the proposed RLNZ model when compared with the GPT3 model.Statistical results show the averaged root mean square(RMS),Bias,and mean absolute error(MAE)of ZTD from GPT3 and RLNZ models are 33.7/0.8/25.7 mm and 22.6/0.1/17.4 mm,respectively.The average improvement rate of the RLNZ model is 33% when compared to the GPT3 model.Finally,the application of the proposed RLNZ model in simulated real-time Precise Point Positioning(PPP)indicates that the accuracy of PPP in N,E and U components is improved by 8%,2%,and 6% when compared with that from the GPT3-based PPP.Meanwhile,the convergence time in N and U components is improved by 23% and 7%,respectively.Such results verify the superiority of the proposed RLNZ model in retrieving realtime ZTD maps for GNSS positioning and navigation applications.