期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
PODEn4DVar对松弛系数和局地化半径的敏感性
1
作者 宋海清 盛炎平 《北京信息科技大学学报(自然科学版)》 2012年第3期15-20,共6页
针对松弛系数和局地化半径的敏感性对PODEn4DVar同化方法性能的影响,以浅水波方程作为预报模型,测试了其对不同松弛系数α和局地化半径R的敏感性,获得了不同模型误差情形下该方法同化时产生的均方根误差变化情况,确定了不同模型误差时... 针对松弛系数和局地化半径的敏感性对PODEn4DVar同化方法性能的影响,以浅水波方程作为预报模型,测试了其对不同松弛系数α和局地化半径R的敏感性,获得了不同模型误差情形下该方法同化时产生的均方根误差变化情况,确定了不同模型误差时的最优松弛系数α和局地化半径R。实验结果表明,在模型有误差时,PODEn4DVar同化方法对参数地选取很敏感。选取最优参数值后,同化精度有了明显提高。 展开更多
关键词 本征正交分解的集合四维交分同化 数据同化 松弛系数 局地化半径 浅水波方程模型
在线阅读 下载PDF
A Soil Moisture Data Assimilation System for Pakistan Using PODEn4DVar and CLM4.5 被引量:2
2
作者 Tariq MAHMOOD Zhenghui XIE +2 位作者 Binghao JIA Ammara HABIB Rashid MAHMOOD 《Journal of Meteorological Research》 SCIE CSCD 2019年第6期1182-1193,共12页
Soil moisture is an important state variable for land–atmosphere interactions.It is a vital land surface variable for research on hydrology,agriculture,climate,and drought monitoring.In current study,a soil moisture ... Soil moisture is an important state variable for land–atmosphere interactions.It is a vital land surface variable for research on hydrology,agriculture,climate,and drought monitoring.In current study,a soil moisture data assimilation framework has been developed by using the Community Land Model version 4.5(CLM4.5)and the proper orthogonal decomposition(POD)-based ensemble four-dimensional variational assimilation(PODEn4 DVar)algorithm.Assimilation experiments were conducted at four agricultural sites in Pakistan by assimilating in-situ soil moisture observations.The results showed that it was a reliable system.To quantify further the feasibility of the data assimilation(DA)system,soil moisture observations from the top four soil-depths(0–5,5–10,10–20,and 20–30 cm)were assimilated.The evaluation results indicated that the DA system improved soil moisture estimation.In addition,updating the soil moisture in the upper soil layers of CLM4.5 could improve soil moisture estimation in deeper soil layers[layer 7(L7,62.0 cm)and layer 8(L8,103.8 cm)].To further evaluate the DA system,observing system simulation experiments(OSSEs)were designed for Pakistan by assimilating daily observations.These idealized experiments produced statistical results that had higher correlation coefficients,reduced root mean square errors,and lower biases for assimilation,which showed that the DA system is able to produce and improve soil moisture estimation in Pakistan. 展开更多
关键词 poden4dvar COMMUNITY LAND Model version 4.5 data ASSIMILATION soil MOISTURE Pakistan
原文传递
基于NLS-4DVar方法的雷达资料同化及其在暴雨预报中的应用 被引量:3
3
作者 张斌 田向军 +1 位作者 张立凤 孙建华 《大气科学》 CSCD 北大核心 2017年第2期321-332,共12页
在基于本征正交分解POD(Proper Orthogonal Decomposition)的集合四维变分同化方法(POD4DEn Var)建立的雷达资料同化系统(PRAS)的基础上,本文利用非线性最小二乘法的集合四维变分同化方法(NLS-4DVar)对PRAS进行改进,解决PRAS在高度非线... 在基于本征正交分解POD(Proper Orthogonal Decomposition)的集合四维变分同化方法(POD4DEn Var)建立的雷达资料同化系统(PRAS)的基础上,本文利用非线性最小二乘法的集合四维变分同化方法(NLS-4DVar)对PRAS进行改进,解决PRAS在高度非线性情况下的适应性问题,建立了新的雷达资料同化系统(NRAS)。通过观测系统模拟试验OSSEs(Observing System Simulation Experiments)和两次实际暴雨同化试验(2010年7月8日,中国中部地区;2014年3月30日,中国华南地区)对NRAS进行检验,并与PRAS的同化结果进行了对比。结果表明:无论是OSSEs还是实际雷达资料的同化,相对于PRAS,NRAS能够进一步提高同化效果。通过增加迭代的次数,NRAS能够有效地调整初始场的风场和水汽场,进一步提高了降水强度和位置的预报精度。但随着迭代次数的增加,对初始场的调整变小,进而对降水预报效果的改进也减小。试验结果表明NRAS能够有效解决PRAS在高度非线性情况下的应用问题,通过有限次数的迭代,即可得到近似收敛的结果。因而NRAS有望在数值预报中更有效地同化雷达资料,提高中小尺度天气的预报水平。 展开更多
关键词 雷达资料同化 PRAS资料同化系统 NLS-4DVar同化方法 NRAS资料同化系统 降水
在线阅读 下载PDF
Real-data assimilation experiment with a joint data assimilation system: assimilating carbon dioxide mole fraction measurements from the Greenhouse gases Observing Satellite 被引量:1
4
作者 HAN Rui TIAN Xiang-Jun +1 位作者 FU Yu CAI Zhao-Nan 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第2期107-113,共7页
The performance of a joint data assimilation system(Tan-Tracker),which is based on the PODEn4 Dvar assimilation method,in assimilating Greenhouse gases Observing SATellite(GOSAT) carbon dioxide(CO2) data,was eva... The performance of a joint data assimilation system(Tan-Tracker),which is based on the PODEn4 Dvar assimilation method,in assimilating Greenhouse gases Observing SATellite(GOSAT) carbon dioxide(CO2) data,was evaluated.Atmospheric 3D CO2 concentrations and CO2 surface fluxes(CFs) from2010 were simulated using a global chemistry transport model(GEOS-Chem).TheTan-Tracker system used the simulated CO2 concentrations and fluxes as a background field and assimilated the GOSAT column average dry-air mole fraction of CO2(X(CO2)) data to optimize CO2 concentrations and CFs in the same assimilation window.Monthly simulated X(CO2)(X(CO2)Sim)) and assimilated X(CO2)(X(CO2),TT) data retrieved at different satellite scan positions were compared with GOSAT-observed X(CO2)(X(CO2),obs)data.The average RMSE between the monthly X(CO2),TT and X(CO2),Obs data was significantly(30%) lower than the average RMSE between X(CO2),Sim and X(CO2),Obs).Specifically,reductions in error were found for the positions of northern Africa(the Sahara),the Indian peninsula,southern Africa,southern North America,and western Australia.The difference between the correlation coefficients of the X(CO2),Sim)and X(CO2),Obs and those of the X(CO2)Π),TT and X(CO2),Obs was only small.In general,the Tan-Tracker system performed very well after assimilating the GOSAT data. 展开更多
关键词 Tan-Tracker GEOS-CHEM GOSAT poden4dvar atmospheric CO2 concentration
在线阅读 下载PDF
A Local Implementation of the POD-Based Ensemble 4DVar with R-Localization
5
作者 TIAN Xiang-Jun 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第1期11-16,共6页
The purpose of this paper is to provide a robust and flexible implementation of a proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar) through Rlocalization.With ... The purpose of this paper is to provide a robust and flexible implementation of a proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar) through Rlocalization.With R-localization,the implementation of the local PODEn4DVar analysis can be coded for parallelization with enhanced assimilation precision.The feasibility and effectiveness of the PODEn4DVar local implementation with R-localization are demonstrated in a two-dimensional shallow-water equation model with simulated observations(OSSEs) in comparison with the original version of the PODEn4DVar with B-localization and that without localization.The performance of the PODEn4DVar with localization shows a significant improvement over the scheme with no localization,particularly under the imperfect model scenario.Moreover,the R-localization scheme is capable of outperforming the Blocalization case to a certain extent.Further,the assimilation experiments also demonstrate that PODEn4DVar with R-localization is most efficient due to its easy parallel implementation. 展开更多
关键词 poden4dvar R-localization local implementation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部