The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of t...The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of the solutions for a system of nonlinear operator equations with this kind of propabilistic contractor couple in N. A. Menger PN-spaces were studied. The works improve and extend the corresponding results by M. Altman, A. C. Lee, W. J. Padgett et al.展开更多
In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existe...In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.展开更多
文摘The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of the solutions for a system of nonlinear operator equations with this kind of propabilistic contractor couple in N. A. Menger PN-spaces were studied. The works improve and extend the corresponding results by M. Altman, A. C. Lee, W. J. Padgett et al.
基金Supported by the National Natural Science Foundation of China (10761007)
文摘In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.