传统固定增益电流超前角探测最大转矩电流比(Fixed-Gain Current Vector Angle Detection Maximum Torque Per Ampere,FGAD-MTPA)算法以转矩的偏导数作为电流超前角搜索的自增量,对负载工况变化具有较高的敏感度。为保持负载工况变化时M...传统固定增益电流超前角探测最大转矩电流比(Fixed-Gain Current Vector Angle Detection Maximum Torque Per Ampere,FGAD-MTPA)算法以转矩的偏导数作为电流超前角搜索的自增量,对负载工况变化具有较高的敏感度。为保持负载工况变化时MTPA状态收敛的一致性,文中提出双变量自适应增益(Double-Variable Adaptive Gain Current Vector Angle Detection,DV-AGAD)的MTPA算法。该算法以β-β_(MTPA)作为超前角自增量,实现最优超前角的迭代。文中提出单变量自适应增益(Single-Variable Adaptive Gain Current Vector Angle Detection,SV-AGAD)的MTPA算法来提高算法动态收敛速度,减轻算法复杂度并减低超调量。根据Lyapunov稳定性理论可知,该控制系统稳定。建立永磁辅助同步磁阻电机(Permanent Magnet Auxiliary Synchronous Reluctance Motor,PMASynRM)矢量控制系统仿真模型,将SV-AGAD-MTPA算法与其他算法进行对比分析。结果表明,新型MTPA算法在加减速、加减载情况下表现良好,同时降低了参数敏感性。展开更多
In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field an...In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.展开更多
电动汽车驱动用铁氧体电机多用分布式定子绕组。以60 k W电动汽车驱动用电机为例,采用计算机仿真方法,研究分布绕组铁氧体电机电磁设计中极槽配合、磁钢布置对转矩能力和性能的影响,同时讨论铁氧体磁钢的不可逆退磁问题,得出能够指导工...电动汽车驱动用铁氧体电机多用分布式定子绕组。以60 k W电动汽车驱动用电机为例,采用计算机仿真方法,研究分布绕组铁氧体电机电磁设计中极槽配合、磁钢布置对转矩能力和性能的影响,同时讨论铁氧体磁钢的不可逆退磁问题,得出能够指导工程实践的有益结论。展开更多
文摘传统固定增益电流超前角探测最大转矩电流比(Fixed-Gain Current Vector Angle Detection Maximum Torque Per Ampere,FGAD-MTPA)算法以转矩的偏导数作为电流超前角搜索的自增量,对负载工况变化具有较高的敏感度。为保持负载工况变化时MTPA状态收敛的一致性,文中提出双变量自适应增益(Double-Variable Adaptive Gain Current Vector Angle Detection,DV-AGAD)的MTPA算法。该算法以β-β_(MTPA)作为超前角自增量,实现最优超前角的迭代。文中提出单变量自适应增益(Single-Variable Adaptive Gain Current Vector Angle Detection,SV-AGAD)的MTPA算法来提高算法动态收敛速度,减轻算法复杂度并减低超调量。根据Lyapunov稳定性理论可知,该控制系统稳定。建立永磁辅助同步磁阻电机(Permanent Magnet Auxiliary Synchronous Reluctance Motor,PMASynRM)矢量控制系统仿真模型,将SV-AGAD-MTPA算法与其他算法进行对比分析。结果表明,新型MTPA算法在加减速、加减载情况下表现良好,同时降低了参数敏感性。
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.