单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整...单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。展开更多
The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque...The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque disturbance has been achieved,the number of disturbance frequencies should be known.In this paper,an adaptive observer-based error feedback control method is proposed,which can solve the speed tracking control problem of PMSM subject to completely unknown multi-frequency sinusoidal load torque disturbance,requiring only the upper bound of the number of disturbance frequencies.The design steps of this method can be divided into the following three steps.In step one,a filtered transformation is applied to convert the observer canonical form of the error system and the transformed exosystem into an adaptive observer form.In step two,an adaptive observer is designed to estimate the unknown parameters of the exosystem and states of the adaptive observer form.In step three,an adaptive observer-based error feedback controller is designed to solve this control problem.The effectiveness of the proposed method is demonstrated by experimental results.展开更多
In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce...In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.展开更多
This article investigates the radial electromagnetic force,vibration,and noise phenomenon in a low-speed,hightorque density spoke-type permanent magnet synchronous machine(ST-PMSM)designed with assisted poles having s...This article investigates the radial electromagnetic force,vibration,and noise phenomenon in a low-speed,hightorque density spoke-type permanent magnet synchronous machine(ST-PMSM)designed with assisted poles having symmetric and asymmetric topologies.Firstly,an analytical expression for the machine radial electromagnetic force(REMF)is derived to quickly estimate the REMF characteristics for the ST-PMSM with assisted poles having symmetric and asymmetric topologies.The 2D-Fourier decomposition method is applied to investigate the radial electromagnetic force harmonics(REMFHs).Secondly,Finite element(FE)models are designed for the machine structural analysis.Subsequently,the FE models and modal analysis are explored for different design cases of the analyzed machine.Lastly,vibration and noise behavior are investigated using an FE approach for the machine designs under symmetric and asymmetric assisted poles topologies.The findings indicate an increase in the richness of REMFHs,alongside a decrease in both the fundamental frequency and the lowest non-zero order of REMF,attributed to the presence of asymmetric assisted poles.Consequently,it is investigated that while considering the vibration and noise response in STPMSMs designed with asymmetric assisted poles topologies,it is essential to thoroughly account for induced non-zero low-order harmonics and their optimization for better vibration and noise performance.展开更多
文摘单相开路故障的五相永磁同步电机(permanent-magnet synchronous motor,PMSM)采用有限集模型预测转矩和磁链控制(finite-control-set model predictive torque and flux control,FCS-MPTFC)策略,存在转矩脉动大、价值函数的权重系数整定困难、迭代计算量大以及共模电压(commonmode voltage,CMV)高等问题。为此,该文提出一种简化FCS-MPTFC策略。首先,建立五相PMSM在单相开路故障情况下的数学模型,并分析CMV产生的机理。其次,以抑制3次谐波电流的原则合成等幅值虚拟电压矢量(virtual voltage vector,V^(3)),并将转矩和磁链价值函数等效转化为电压价值函数,同时采用无差拍控制思想计算出参考电压矢量,进而通过合理划分扇区,直接获得最优V^(3)。最后,选择方向相反的两个基电压矢量代替零矢量,以减小开路故障下的CMV。仿真和实验结果表明:所提控制策略不仅能抑制单相开路故障导致的转矩脉动、降低计算负荷和CMV、抑制电流谐波,而且具有优良的稳态和动态性能。
基金supported by the National Natural Science Foundation of China(Nos.62273127 and 62073217)the Dreams Foundation of Jianghuai Advance Technology Center(No.2023-ZM01J006)the Anhui Provincial Key Research and Development Project(No.2022a05020025).
文摘The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque disturbance has been achieved,the number of disturbance frequencies should be known.In this paper,an adaptive observer-based error feedback control method is proposed,which can solve the speed tracking control problem of PMSM subject to completely unknown multi-frequency sinusoidal load torque disturbance,requiring only the upper bound of the number of disturbance frequencies.The design steps of this method can be divided into the following three steps.In step one,a filtered transformation is applied to convert the observer canonical form of the error system and the transformed exosystem into an adaptive observer form.In step two,an adaptive observer is designed to estimate the unknown parameters of the exosystem and states of the adaptive observer form.In step three,an adaptive observer-based error feedback controller is designed to solve this control problem.The effectiveness of the proposed method is demonstrated by experimental results.
基金supported by the Key Technology of Flexible Regulation of Energy in Green High-Efficiency/Carbon-Efficient Buildings under the Smart Park System of PowerChina Guiyang Co.,Ltd.(YJ2022-12)the Science and Technology Support Plan of Guizhou Province“Research and Application Development of Key Technologies for Flexible Regulation of Energy in High-Efficiency/Carbon-Efficient Buildings”(Guizhou Science and Technology Cooperation Support[2023]General 409).
文摘In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.
基金supported by the National Key Research and Developmen Program of China(2022YFB3403100)。
文摘This article investigates the radial electromagnetic force,vibration,and noise phenomenon in a low-speed,hightorque density spoke-type permanent magnet synchronous machine(ST-PMSM)designed with assisted poles having symmetric and asymmetric topologies.Firstly,an analytical expression for the machine radial electromagnetic force(REMF)is derived to quickly estimate the REMF characteristics for the ST-PMSM with assisted poles having symmetric and asymmetric topologies.The 2D-Fourier decomposition method is applied to investigate the radial electromagnetic force harmonics(REMFHs).Secondly,Finite element(FE)models are designed for the machine structural analysis.Subsequently,the FE models and modal analysis are explored for different design cases of the analyzed machine.Lastly,vibration and noise behavior are investigated using an FE approach for the machine designs under symmetric and asymmetric assisted poles topologies.The findings indicate an increase in the richness of REMFHs,alongside a decrease in both the fundamental frequency and the lowest non-zero order of REMF,attributed to the presence of asymmetric assisted poles.Consequently,it is investigated that while considering the vibration and noise response in STPMSMs designed with asymmetric assisted poles topologies,it is essential to thoroughly account for induced non-zero low-order harmonics and their optimization for better vibration and noise performance.