Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feed...Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.展开更多
To enhance the control accuracy of permanent magnet synchronous linear motor(PMSLM)servo systems affected by disturbances,such as time-varying parameters and abrupt load changes,an active disturbance rejection control...To enhance the control accuracy of permanent magnet synchronous linear motor(PMSLM)servo systems affected by disturbances,such as time-varying parameters and abrupt load changes,an active disturbance rejection control(ADRC)algorithm based on a reduced-order extended state observer(ESO)is adopted to suppress the disturbances on the control system.First,the system’s ability to estimate disturbances is enhanced by linearizing the ESO.Second,the pole placement method is used for the construction of a reduced-order ESO that can reduce the influence of the number of adjustment parameters and the phase lag.The parameters of the reduced-order ADRC are adjusted,the optimal control parameters are selected,and the stability of controller is proved.Finally,practical experiments prove that the proposed method can improve control accuracy under multiple working conditions and features strong anti-interference ability.There is a smaller steady-state error,and no overshoot is observed.展开更多
为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链...为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。展开更多
文摘Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.
基金Supported by the National Natural Science Foundation of China(51837001,51707002,51637001).
文摘To enhance the control accuracy of permanent magnet synchronous linear motor(PMSLM)servo systems affected by disturbances,such as time-varying parameters and abrupt load changes,an active disturbance rejection control(ADRC)algorithm based on a reduced-order extended state observer(ESO)is adopted to suppress the disturbances on the control system.First,the system’s ability to estimate disturbances is enhanced by linearizing the ESO.Second,the pole placement method is used for the construction of a reduced-order ESO that can reduce the influence of the number of adjustment parameters and the phase lag.The parameters of the reduced-order ADRC are adjusted,the optimal control parameters are selected,and the stability of controller is proved.Finally,practical experiments prove that the proposed method can improve control accuracy under multiple working conditions and features strong anti-interference ability.There is a smaller steady-state error,and no overshoot is observed.
文摘为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。