Active disturbance rejection control(ADRC)exhibits notable resilience against both internal and external disturbances.Its straightforward implementation further enhances its appeal for controlling a diverse class of s...Active disturbance rejection control(ADRC)exhibits notable resilience against both internal and external disturbances.Its straightforward implementation further enhances its appeal for controlling a diverse class of systems.However,the high-gain nature of the extended state observer,which is the core of ADRC,may degrade performance when faced with high-frequency sensing noise—a common challenge in real-world settings.This article addresses this issue through a specifically placed and particularly designed low-pass filterwhile preserving the ease of implementation characteristic of ADRC.This article proposes a simple tuning method for the filter-controller structure to improve the scheme’s design process.Theoretical results simplify the design process based on the Routh–Hurwitz criterion such that the additional low-pass filter does not affect the closedloop stability.The maximum power point tracking task on a wind turbine—a nonlinear system requiring the measurement of inherently noisy signals,such as electrical currents—is addressed to illustrate the design process of the proposed approach.Real-time experiments on a laboratory platform emulating a Permanent Magnet Synchronous Generator-based wind turbine endorse the enhanced scheme’s effectiveness in mitigating high-frequency sensing noise.展开更多
文摘Active disturbance rejection control(ADRC)exhibits notable resilience against both internal and external disturbances.Its straightforward implementation further enhances its appeal for controlling a diverse class of systems.However,the high-gain nature of the extended state observer,which is the core of ADRC,may degrade performance when faced with high-frequency sensing noise—a common challenge in real-world settings.This article addresses this issue through a specifically placed and particularly designed low-pass filterwhile preserving the ease of implementation characteristic of ADRC.This article proposes a simple tuning method for the filter-controller structure to improve the scheme’s design process.Theoretical results simplify the design process based on the Routh–Hurwitz criterion such that the additional low-pass filter does not affect the closedloop stability.The maximum power point tracking task on a wind turbine—a nonlinear system requiring the measurement of inherently noisy signals,such as electrical currents—is addressed to illustrate the design process of the proposed approach.Real-time experiments on a laboratory platform emulating a Permanent Magnet Synchronous Generator-based wind turbine endorse the enhanced scheme’s effectiveness in mitigating high-frequency sensing noise.