With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminati...With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminating the need to provide their credentials repeatedly.However,this convenience raises concerns about user security and privacy.The increasing reliance on SSO and its potential risks make it imperative to comprehensively review the various SSO security and privacy threats,identify gaps in existing systems,and explore effective mitigation solutions.This need motivated the first systematic literature review(SLR)of SSO security and privacy,conducted in this paper.The SLR is performed based on rigorous structured research methodology with specific inclusion/exclusion criteria and focuses specifically on the Web environment.Furthermore,it encompasses a meticulous examination and thematic synthesis of 88 relevant publications selected out of 2315 journal articles and conference/proceeding papers published between 2017 and 2024 from reputable academic databases.The SLR highlights critical security and privacy threats relating to SSO systems,reveals significant gaps in existing countermeasures,and emphasizes the need for more comprehensive protection mechanisms.The findings of this SLR will serve as an invaluable resource for scientists and developers interested in enhancing the security and privacy preservation of SSO and designing more efficient and robust SSO systems,thus contributing to the development of the authentication technologies field.展开更多
The effect of prenatal exposure to ambient particulate matter(PM)on birth weight varies considerably across studies,and the findings remain inconclusive.In this study,we conducted a meta-analysis to assess the associa...The effect of prenatal exposure to ambient particulate matter(PM)on birth weight varies considerably across studies,and the findings remain inconclusive.In this study,we conducted a meta-analysis to assess the associations between exposure to PM_(2.5) and PM10 and birth weight.A total of 74 studies were identified through searches in Web of Science,PubMed,Embase,and Ovid Medline,as well as manual searches,up to October 2024.We found that for each 10μg/m^(3) increase in PM_(2.5),the risk of low birth weight(LBW)increased significantly during the entire pregnancy(odds ratio[OR]=2.41,95%confidence interval[CI]:1.99–2.91)and in all trimesters.Similarly,for every 10μg/m^(3) increase in PM10 concentration,the risk of LBW increased significantly during the entire pregnancy(OR=1.46,95%CI:1.16–1.84).Subgroup analysis by maternal age for PM_(2.5) showed that mothers aged 30 and above had a significantly higher risk of LBW(OR=3.69,95%CI:2.81–4.84),compared with those under 30.In conclusion,maternal exposure to PM_(2.5) and PM_(10) is associated with an increased risk of LBW across all trimesters.Additionally,mothers aged 30 and above are at a higher risk of LBW,compared with younger mothers.Further research is needed to clarify the biological mechanisms by which PM pollution may contribute to LBW.展开更多
文摘With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminating the need to provide their credentials repeatedly.However,this convenience raises concerns about user security and privacy.The increasing reliance on SSO and its potential risks make it imperative to comprehensively review the various SSO security and privacy threats,identify gaps in existing systems,and explore effective mitigation solutions.This need motivated the first systematic literature review(SLR)of SSO security and privacy,conducted in this paper.The SLR is performed based on rigorous structured research methodology with specific inclusion/exclusion criteria and focuses specifically on the Web environment.Furthermore,it encompasses a meticulous examination and thematic synthesis of 88 relevant publications selected out of 2315 journal articles and conference/proceeding papers published between 2017 and 2024 from reputable academic databases.The SLR highlights critical security and privacy threats relating to SSO systems,reveals significant gaps in existing countermeasures,and emphasizes the need for more comprehensive protection mechanisms.The findings of this SLR will serve as an invaluable resource for scientists and developers interested in enhancing the security and privacy preservation of SSO and designing more efficient and robust SSO systems,thus contributing to the development of the authentication technologies field.
文摘The effect of prenatal exposure to ambient particulate matter(PM)on birth weight varies considerably across studies,and the findings remain inconclusive.In this study,we conducted a meta-analysis to assess the associations between exposure to PM_(2.5) and PM10 and birth weight.A total of 74 studies were identified through searches in Web of Science,PubMed,Embase,and Ovid Medline,as well as manual searches,up to October 2024.We found that for each 10μg/m^(3) increase in PM_(2.5),the risk of low birth weight(LBW)increased significantly during the entire pregnancy(odds ratio[OR]=2.41,95%confidence interval[CI]:1.99–2.91)and in all trimesters.Similarly,for every 10μg/m^(3) increase in PM10 concentration,the risk of LBW increased significantly during the entire pregnancy(OR=1.46,95%CI:1.16–1.84).Subgroup analysis by maternal age for PM_(2.5) showed that mothers aged 30 and above had a significantly higher risk of LBW(OR=3.69,95%CI:2.81–4.84),compared with those under 30.In conclusion,maternal exposure to PM_(2.5) and PM_(10) is associated with an increased risk of LBW across all trimesters.Additionally,mothers aged 30 and above are at a higher risk of LBW,compared with younger mothers.Further research is needed to clarify the biological mechanisms by which PM pollution may contribute to LBW.