A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associate...A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.展开更多
The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and ...The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment.展开更多
Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative cont...Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.展开更多
Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great signi...Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great significance in locating and studying the cold seep system that is usually accompanied by hydrate layers in the subsurface.A multibeam echo-sounder system(MBES)can record the complete backscatter intensity of the water column,and it is one of the most effective means for detecting cold seeps.However,the gas plumes recorded in multibeam water column images(WCI)are usually blurred due to the interference of the complicated water environment and the sidelobes of the MBES,making it difficult to obtain the effective segmentation.Therefore,based on the existing UNet semantic segmentation network,this paper proposes an AP-UNet network combining the convolutional block attention module and the pyramid pooling module for the automatic segmentation and extraction of gas plumes.Comparative experiments are conducted among three traditional segmentation methods and two deep learning methods.The results show that the AP-UNet segmentation model can effectively suppress complicated water column noise interference.The segmentation precision,the Dice coefficient,and the recall rate of this model are 92.09%,92.00%,and 92.49%,respectively,which are 1.17%,2.10%,and 2.07%higher than the results of the UNet.展开更多
The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99...The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99 Ma) to Neoarchean(2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction(SSZ)-type Mayari-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains(n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negativeε_(Hf)(t)(-26 to-0.6) and occasional inclusions of quartz, K-feldspar,biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains(297±5 Ma to 2126±27 Ma) show positive εHf(t)(+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile(mantle)sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite.We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.展开更多
Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the ra...Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the radius to increase at 0.011-0.06 mm yr-1. Deep mantle plumes provide a geophysical context within which such radial expansion, if confirmed, could possibly be explained. Both theory and observation suggest that these rising plumes more readily penetrate the 670 km barrier than do subducting slabs moving in the opposite direction towards the core-mantle boundary. If so, there would be a net flow of mass from the deep lower mantle into the upper mantle. Due to the lower pressures in the upper mantle,the excess mass of plume materials reaching there would transform to minerals with lower densities than they had at the mantle base. An increase in the mantle volume and the Earth’s radius would therefore be implied. Using previously published data for the African superplume. it is estimated that this mechanism could cause the Earth’s radius to increase at rates of 0.02-0.3 mm yr-1, similar to the rates possibly indicated in the present studies. This mechanism could also explain the very large range in current estimates of mantle plume heat and volume fluxes. A possible energy source for this plumedriven mode of expansion is discussed.展开更多
Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner d...Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.展开更多
Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the l...Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the leaked gases frequently exhibit a flame-like structure.We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume.Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data,by which synthetic seismic sections in different dominant frequencies could be numerically simulated,seismic attribute sections(e.g.,instantaneous amplitude,instantaneous frequency,and instantaneous phase)extracted,and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations.The instantaneous amplitude is positively correlated with bubble volume fraction,while the instantaneous frequency and bubble volume fraction are negatively correlated.In addition,information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction.As the bubble volume fraction increases,the information entropy of the instantaneous phase increases rapidly at the beginning,followed by a slight upward trend,and finally stabilizes.Therefore,under optimal noise conditions,the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes.展开更多
In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quan...In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quantification of enhanced mixing due to surface waves as well as measurement of other plume parameters.展开更多
The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distanc...The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distance apart. The problem is governed by four dimensionless parameters: The Grashoff number, R, which is a measure of the difference in concentration of light material of the plume to its surrounding fluid, the Prandtl number, σ, which is the ratio of viscosity, ν, to thermal diffusivity, κ, the thickness of the plume, 2x0, and the distance, d, between the two vertical walls relative to the salt-finger length scale. The influence of the boundary on the fluxes of material, heat, and buoyancy is examined to find that the buoyancy flux possesses a local maximum for moderate to small thicknesses of the plume when they lie close to the wall. This has the effect of introducing a region of instability for thin plumes near the wall with an asymptotically larger growth rate. In addition, the presence of the boundary suppresses the three-dimensional instabilities present in the unbounded domain and allows only two-dimensional instabilities for moderate to small distances between the bounding walls.展开更多
The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these ...The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.展开更多
In Earth’s mantle,gravity instabilities initiated by density inversion lead to upwelling of hot materials as plumes.This study focuses upon the ascent dynamics of plumes to provide an explanation of the periodic mult...In Earth’s mantle,gravity instabilities initiated by density inversion lead to upwelling of hot materials as plumes.This study focuses upon the ascent dynamics of plumes to provide an explanation of the periodic multiple eruption events in large igneous provinces(LIP)and hotspots.We demonstrate that depending on physical conditions,plumes can either ascend in a continuous process with a single,large head trailing into a long slender tail,or alternatively,they ascend in a pulsating fashion producing multiple inaxis heads.Based on the Volume of Fluid(VOF)method,we performed computational fluid dynamics(CFD)simulations to constrain the thermo-mechanical conditions that decide the continuous versus pulsating dynamics.The simulations suggest the density(ρ^(*))and the viscosity(R)ratios of the ambient to the plume and the influx rates(Re)are the prime factors in controlling the ascent dynamics.The simulations could also predict thermal events near the surface causing eruption periodically as pulses.The pulsating plume model explains the multiple eruption events in different LIPs and our simulation results predict that variation in the temperature of the source layer can cause a range of timescale for this periodicity.展开更多
Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction ...Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion, lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals, migrated upwards; whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had a tendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in the Earth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressure and viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly by cascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth were interdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumes opens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silver concentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flow of mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineral deposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other many elements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields (Lianbaling) and further briefly analyzes the source of ore-forming material and constructs an ore-forming and -controlling model.展开更多
Using the occurrence characteristics of bubble plumes in the South China Sea as a reference, this paper continues to study the seismic responses produced by bubble plumes in the cold seepage active region. To make the...Using the occurrence characteristics of bubble plumes in the South China Sea as a reference, this paper continues to study the seismic responses produced by bubble plumes in the cold seepage active region. To make the plume modelling scheme more reasonable, we modified the original modelling scheme and reconstructed a plume water body model based on the variation of its radius as bubbles rise in seawater. The plume seismic records of shot gathers were obtained by forward simulation. The seismic records of single shot show obvious characteristics of a scattering wave field and the periodic characteristics of the model. Seismic records of shot gathers were processed using prestack depth migration. The boundary of its imaging section has a good convergence effect. The migration sections can be imaged distinctly with higher accuracy. The aforementioned studies once again laid a foundation for the further study of the seismic responses produced by plumes. They also gradually probed a more suitable seismic data processing method for plumes and provided a theoretical guidance for the identification of plumes.展开更多
To study the bubble plume's seismic response characteristics,the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theor...To study the bubble plume's seismic response characteristics,the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume.The finite difference method is used for forward modelling,and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume.A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume.The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up,and changes in bubble radius will not cause seismic attributes to change,which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity,while the bubble radius has a weak impact on the acoustic velocity.The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration,as well as on distribution of the methane bubble in seawater.展开更多
The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infr...The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infrared signature analysis tool(IRSAT) was developed to understand the spectral characteristics of exhaust plumes in detail.Through a finite volume technique,flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach.A refined 13-species,30-reaction chemistry scheme was used for combustion effects and a k-e-Rtturbulence model for entrainment effects.Using flowfield properties as input data,the spectrum was integrated with a line of sight(LOS) method based on a single line group(SLG) model with Curtis-Godson approximation.The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 lm and had good agreement for its location with imaging spectrometer data.The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures:(a) afterburning;(b) chamber pressure from ignition to cutoff;and(c) minor changes in the ratio of hydroxyl-terminated polybutadiene(HTPB) binder to ammonium perchlorate(AP) oxidizer in propellant.Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%.Also,the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff.An increase of chamber pressure can lead to more distinct diamonds,whose distance intervals are extended,and the position of the first diamond moving backwards.In addition,an increase in HTPB/AP causes a significant jump in spectral intensity.The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB,and the growth rates of radiance intensities in some bands reach up to 50% as HTPB weight increases by 3%.展开更多
A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air.Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near th...A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air.Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near the exhaust nozzle.The variation characteristics of fine particle matter(PM_(2.5)) and its components in diesel vehicle exhaust plumes were analyzed.The PM_(2.5) emissions gradually increased with increasing distance from the nozzle in the plume.Elemental carbon emissions remained basically unchanged, organic carbon and total carbon(TC) increased with increasing distance.The concentrations of SO_(4)^(2-),NO_(3)^(-) and NH_(4)^(+) (SNA) directly emitted by the vehicles were very low but increased rapidly in the exhaust plume.The selective catalytic reduction(SCR) reduced 42.7% TC, 40% NO_(3)^(-) emissions, but increased 104% SO_(4)^(2-) and 36% NH_(4)^(+) emissions, respectively.In summary,the SCR reduced 29% primary PM_(2.5) emissions for the tested diesel vehicles.The NH_(4)NO_(3) particle formation maybe more important in the plume, and there maybe other forms of formation of NH_(4)^(+) (eg.NH4Cl).The generation of secondary organic carbon(SOC) plays a leading role in the generation of secondary PM_(2.5).The SCR enhanced the formation of SOC and SNA in the plume, but comprehensive analysis shows that the SCR more enhanced the SNA formation in the plume, which is mainly new particles formation process.The inconsistency between secondary organic aerosol(SOA) and primary organic aerosol definitions is one of the important reasons for the difference between SOA simulation and observation.展开更多
The Shatsky and Hess Rises,the Mid-Pacific Mountains and the Line Islands large igneous provinces(LIPs) present different challenges to conventional plume models.Resolving the genesis of these LIPs is important not on...The Shatsky and Hess Rises,the Mid-Pacific Mountains and the Line Islands large igneous provinces(LIPs) present different challenges to conventional plume models.Resolving the genesis of these LIPs is important not only for a more complete understanding of mantle plumes and plume-generated magmatism,but also for establishing the role of subducted LIP conjugates in the evolution of the Laramide orogeny and other circum-Pacific orogenic events,which are related to the development of large porphyry systems.Given past difficulties in developing consistent geodynamic models for these LIPs,it is useful to consider whether viable alternative geodynamic scenarios may be provided by recent concepts such as melt channel networks and channel-associated lineaments,along with the "two mode"model of melt generation,where a deeply-sourced channel network is superimposed on the plume,evolving and adapting over millions of years.A plume may also interact with transform faults in close proximity to a mid ocean ridge,with the resultant bathymetric character strongly affected by the relative age difference of lithosphere across the fault.Our results suggest that the new two-mode melt models resolve key persistent issues associated with the Shatsky Rise and other LIPs and provide evidence for the existence of a conduit system within plumes that feed deeply-sourced material to the plume head,with flow maintained over considerable distances.The conduit system eventually breaks down during plume-ridge separation and may do so prior to the plume head being freed from the triple junction or spreading ridge.There is evidence for not only plume head capture by a triple junction but also for substantial deformation of the plume stem as the distance between the stem and anchored plume head increases.The evidence suggests that young transforms can serve as pathways for plume material migration,at least in certain plume head-transform configurations.A fortuitous similarity between the path of the Shatsky and Sio plumes,with respect to young spreading ridges and transforms,helps to clarify previously problematic bathymetric features that were not readily ascribed to fixed plumes alone.The Line Island Chain,which has been the subject of a vast number of models,is related mainly to several plumes that passed beneath the same region of oceanic crust,a relatively rare event that has resulted in LIP formation rather than a regular seamount track.Our findings have important implications for the timing and mechanism for the Laramide Orogeny in North America,demonstrating that the Hess Rise conjugate may be much smaller than traditionally thought.The Mid Pacific Mountains conjugate may not exist at all,given large parts of these LIPs were formed at an ‘off-ridge’ site.This needs to be taken into account while considering the effects of conjugate collision on mineralization and orogenic events.展开更多
Experiments using electrical resistivity tomography(ERT) have shown promising results in reducing the uncertainty of solute plume characteristics related to estimates based on the analysis of local point measurements ...Experiments using electrical resistivity tomography(ERT) have shown promising results in reducing the uncertainty of solute plume characteristics related to estimates based on the analysis of local point measurements only.To explore the similarities and differences between two cross-borehole ERT inversion approaches for characterizing salt tracer plumes,namely the classical smoothness-constrained inversion and a geostatistically based approach,we performed two-dimensional synthetic experiments.Simplifying assumptions about the solute transport model and the electrical forward and inverse model allowed us to study the sensitivity of the ERT inversion approaches towards a variety of basic conditions,including the number of boreholes,measurement schemes,contrast between the plume and background electrical conductivity,use of a priori knowledge,and point conditioning.The results show that geostatistically based and smoothness-constrained inversions of electrical resistance data yield plume characteristics of similar quality,which can be further improved when point measurements are incorporated and advantageous measurement schemes are chosen.As expected,an increased number of boreholes included in the ERT measurement layout can highly improve the quality of inferred plume characteristics,while in this case the benefits of point conditioning and advantageous measurement schemes diminish.Both ERT inversion approaches are similarly sensitive to the noise level of the data and the contrast between the solute plume and background electrical conductivity,and robust with regard to biased input parameters,such as mean concentration,variance,and correlation length of the plume.Although sophisticated inversion schemes have recently become available,in which flow and transport as well as electrical forward models are coupled,these schemes effectively rely on a relatively simple geometrical parameterization of the hydrogeological model.Therefore,we believe that standard uncoupled ERT inverse approaches,like the ones discussed and assessed in this paper,will continue to be important to the imaging and characterization of solute plumes in many real-world applications.展开更多
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten...Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.展开更多
基金supported by grant D86-RALMI23CIVIE_01 awarded by the Italian Ministry of University and Research under the Program for Young Researchers“Rita Levi Montalcini”.
文摘A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.
基金supported by the Major Project of Hunan Natural Science Foundation,China(No.2021JC0010)the National Natural Science Foundation of China(No.51274251)。
文摘The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment.
基金financially supported by the National Science Foundation of China(No.41920104010)the China Postdoctoral Science Foundation(No.2024M762767)+3 种基金the Fundamental Research Funds for the Central University,CHD(No.300102264104)by the Postdoctoral Fellowship Program of CPSF(No.GZC20241444)supported by Fondazione Cariplo and Fondazione CDP(No.2022-1546_001)by the Italian Ministry of Education,MUR(Project Dipartimenti di Eccellenza,TECLA,Department of Earth and Environmental Sciences,University of Milano-Bicocca)。
文摘Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.
基金Supported by the National Natural Science Foundation of China (Nos.41930535,41906165)the High-level Foreign Expert Introduction Program (No.G2021025006L)the SDUST Research Fund (No.2019TDJH103)。
文摘Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great significance in locating and studying the cold seep system that is usually accompanied by hydrate layers in the subsurface.A multibeam echo-sounder system(MBES)can record the complete backscatter intensity of the water column,and it is one of the most effective means for detecting cold seeps.However,the gas plumes recorded in multibeam water column images(WCI)are usually blurred due to the interference of the complicated water environment and the sidelobes of the MBES,making it difficult to obtain the effective segmentation.Therefore,based on the existing UNet semantic segmentation network,this paper proposes an AP-UNet network combining the convolutional block attention module and the pyramid pooling module for the automatic segmentation and extraction of gas plumes.Comparative experiments are conducted among three traditional segmentation methods and two deep learning methods.The results show that the AP-UNet segmentation model can effectively suppress complicated water column noise interference.The segmentation precision,the Dice coefficient,and the recall rate of this model are 92.09%,92.00%,and 92.49%,respectively,which are 1.17%,2.10%,and 2.07%higher than the results of the UNet.
基金financially supported by FEDER Funds,the Spanish Project CGL2015-65824 granted by the Spanish“Ministerio de Economía y Competitividad”to JAPthe Ramón y Cajal Fellowship RYC-2015-17596 to JMGJ
文摘The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99 Ma) to Neoarchean(2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction(SSZ)-type Mayari-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains(n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negativeε_(Hf)(t)(-26 to-0.6) and occasional inclusions of quartz, K-feldspar,biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains(297±5 Ma to 2126±27 Ma) show positive εHf(t)(+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile(mantle)sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite.We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.
文摘Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the radius to increase at 0.011-0.06 mm yr-1. Deep mantle plumes provide a geophysical context within which such radial expansion, if confirmed, could possibly be explained. Both theory and observation suggest that these rising plumes more readily penetrate the 670 km barrier than do subducting slabs moving in the opposite direction towards the core-mantle boundary. If so, there would be a net flow of mass from the deep lower mantle into the upper mantle. Due to the lower pressures in the upper mantle,the excess mass of plume materials reaching there would transform to minerals with lower densities than they had at the mantle base. An increase in the mantle volume and the Earth’s radius would therefore be implied. Using previously published data for the African superplume. it is estimated that this mechanism could cause the Earth’s radius to increase at rates of 0.02-0.3 mm yr-1, similar to the rates possibly indicated in the present studies. This mechanism could also explain the very large range in current estimates of mantle plume heat and volume fluxes. A possible energy source for this plumedriven mode of expansion is discussed.
基金Supported by the Post-Doctorate Science Foundation.
文摘Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD074)the Laboratory for Marine Mineral Resources+3 种基金Qingdao National Laboratory for Marine Science and Technology(No.MMRKF201810)the National Natural Science Foundation of China(No.41606077)the National Key R&D Program of China:HighPrecision Characterization Technology of Gas Hydrate Reservoir(No.2017YFC0307406-03)supported by the Shandong Province Taishan Scholar Construction Project。
文摘Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the leaked gases frequently exhibit a flame-like structure.We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume.Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data,by which synthetic seismic sections in different dominant frequencies could be numerically simulated,seismic attribute sections(e.g.,instantaneous amplitude,instantaneous frequency,and instantaneous phase)extracted,and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations.The instantaneous amplitude is positively correlated with bubble volume fraction,while the instantaneous frequency and bubble volume fraction are negatively correlated.In addition,information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction.As the bubble volume fraction increases,the information entropy of the instantaneous phase increases rapidly at the beginning,followed by a slight upward trend,and finally stabilizes.Therefore,under optimal noise conditions,the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes.
文摘In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quantification of enhanced mixing due to surface waves as well as measurement of other plume parameters.
文摘The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distance apart. The problem is governed by four dimensionless parameters: The Grashoff number, R, which is a measure of the difference in concentration of light material of the plume to its surrounding fluid, the Prandtl number, σ, which is the ratio of viscosity, ν, to thermal diffusivity, κ, the thickness of the plume, 2x0, and the distance, d, between the two vertical walls relative to the salt-finger length scale. The influence of the boundary on the fluxes of material, heat, and buoyancy is examined to find that the buoyancy flux possesses a local maximum for moderate to small thicknesses of the plume when they lie close to the wall. This has the effect of introducing a region of instability for thin plumes near the wall with an asymptotically larger growth rate. In addition, the presence of the boundary suppresses the three-dimensional instabilities present in the unbounded domain and allows only two-dimensional instabilities for moderate to small distances between the bounding walls.
文摘The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.
基金UD would like to thank the Department of Science and TechnologyGovernment of India for funding through INSPIRE-FACULTY award(DST/INSPIRE/04/2016/001582)NM is thankful to Department of Science and Technology,Government of India for J.C.Bose Fellowship award.
文摘In Earth’s mantle,gravity instabilities initiated by density inversion lead to upwelling of hot materials as plumes.This study focuses upon the ascent dynamics of plumes to provide an explanation of the periodic multiple eruption events in large igneous provinces(LIP)and hotspots.We demonstrate that depending on physical conditions,plumes can either ascend in a continuous process with a single,large head trailing into a long slender tail,or alternatively,they ascend in a pulsating fashion producing multiple inaxis heads.Based on the Volume of Fluid(VOF)method,we performed computational fluid dynamics(CFD)simulations to constrain the thermo-mechanical conditions that decide the continuous versus pulsating dynamics.The simulations suggest the density(ρ^(*))and the viscosity(R)ratios of the ambient to the plume and the influx rates(Re)are the prime factors in controlling the ascent dynamics.The simulations could also predict thermal events near the surface causing eruption periodically as pulses.The pulsating plume model explains the multiple eruption events in different LIPs and our simulation results predict that variation in the temperature of the source layer can cause a range of timescale for this periodicity.
基金This research was performed as part of the project supported by the National Natural Science Foundation of China(grant 40272088)Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX1-07)the Program of Financially Aiding Backbone Teachers Working in Colleges and Universities(J-00-25).
文摘Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion, lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals, migrated upwards; whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had a tendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in the Earth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressure and viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly by cascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth were interdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumes opens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silver concentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flow of mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineral deposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other many elements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields (Lianbaling) and further briefly analyzes the source of ore-forming material and constructs an ore-forming and -controlling model.
基金The National Natural Science Foundation under contract No.41306050the Science and Technology Project of Guangdong Province under contract No.2014A010103030+1 种基金the Natural Science Foundation of Guangdong Province under contract No.2015A030313617the National Marine Important Charity Special Foundation under contract No.201305019
文摘Using the occurrence characteristics of bubble plumes in the South China Sea as a reference, this paper continues to study the seismic responses produced by bubble plumes in the cold seepage active region. To make the plume modelling scheme more reasonable, we modified the original modelling scheme and reconstructed a plume water body model based on the variation of its radius as bubbles rise in seawater. The plume seismic records of shot gathers were obtained by forward simulation. The seismic records of single shot show obvious characteristics of a scattering wave field and the periodic characteristics of the model. Seismic records of shot gathers were processed using prestack depth migration. The boundary of its imaging section has a good convergence effect. The migration sections can be imaged distinctly with higher accuracy. The aforementioned studies once again laid a foundation for the further study of the seismic responses produced by plumes. They also gradually probed a more suitable seismic data processing method for plumes and provided a theoretical guidance for the identification of plumes.
基金financially supported by the National Natural Science Foundation of China(No.41306050)the Science and Technology Project of Guangdong Province of China(No.2014A010103030)+1 种基金the Natural Science Foundation of Guangdong Province under contract(No.2015A030313617)the National Marine Important Charity Special Foundation of China(No.201305019)
文摘To study the bubble plume's seismic response characteristics,the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume.The finite difference method is used for forward modelling,and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume.A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume.The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up,and changes in bubble radius will not cause seismic attributes to change,which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity,while the bubble radius has a weak impact on the acoustic velocity.The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration,as well as on distribution of the methane bubble in seawater.
基金supported by the National Natural Science Foundation of China(No.51576054)
文摘The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infrared signature analysis tool(IRSAT) was developed to understand the spectral characteristics of exhaust plumes in detail.Through a finite volume technique,flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach.A refined 13-species,30-reaction chemistry scheme was used for combustion effects and a k-e-Rtturbulence model for entrainment effects.Using flowfield properties as input data,the spectrum was integrated with a line of sight(LOS) method based on a single line group(SLG) model with Curtis-Godson approximation.The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 lm and had good agreement for its location with imaging spectrometer data.The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures:(a) afterburning;(b) chamber pressure from ignition to cutoff;and(c) minor changes in the ratio of hydroxyl-terminated polybutadiene(HTPB) binder to ammonium perchlorate(AP) oxidizer in propellant.Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%.Also,the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff.An increase of chamber pressure can lead to more distinct diamonds,whose distance intervals are extended,and the position of the first diamond moving backwards.In addition,an increase in HTPB/AP causes a significant jump in spectral intensity.The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB,and the growth rates of radiance intensities in some bands reach up to 50% as HTPB weight increases by 3%.
基金supported by the National Natural Science Foundation of China (No.41605095)the Beijing Natural Science Foundation (No.JQ19030)+1 种基金the Beijing Municipal Commission of Education (No.PXM2019014213000007)the School Level Cultivation Fund of Beijing Technology and Business University for Distinguished and Excellent Young Scholars (No.BTBUYP2020)。
文摘A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air.Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near the exhaust nozzle.The variation characteristics of fine particle matter(PM_(2.5)) and its components in diesel vehicle exhaust plumes were analyzed.The PM_(2.5) emissions gradually increased with increasing distance from the nozzle in the plume.Elemental carbon emissions remained basically unchanged, organic carbon and total carbon(TC) increased with increasing distance.The concentrations of SO_(4)^(2-),NO_(3)^(-) and NH_(4)^(+) (SNA) directly emitted by the vehicles were very low but increased rapidly in the exhaust plume.The selective catalytic reduction(SCR) reduced 42.7% TC, 40% NO_(3)^(-) emissions, but increased 104% SO_(4)^(2-) and 36% NH_(4)^(+) emissions, respectively.In summary,the SCR reduced 29% primary PM_(2.5) emissions for the tested diesel vehicles.The NH_(4)NO_(3) particle formation maybe more important in the plume, and there maybe other forms of formation of NH_(4)^(+) (eg.NH4Cl).The generation of secondary organic carbon(SOC) plays a leading role in the generation of secondary PM_(2.5).The SCR enhanced the formation of SOC and SNA in the plume, but comprehensive analysis shows that the SCR more enhanced the SNA formation in the plume, which is mainly new particles formation process.The inconsistency between secondary organic aerosol(SOA) and primary organic aerosol definitions is one of the important reasons for the difference between SOA simulation and observation.
基金The comments of two reviewers helped us to clarify and improve the final paper.John Cannon,Maria Seton and Simon Williams are thanked for assistance with GPlates during the studySabin Zahirovic was supported by the Australian Research Council(Grant IH130200012)Alfred P Sloan(Grants G-2017-9997 and G-2018-11296)through the Deep Carbon Observatory.
文摘The Shatsky and Hess Rises,the Mid-Pacific Mountains and the Line Islands large igneous provinces(LIPs) present different challenges to conventional plume models.Resolving the genesis of these LIPs is important not only for a more complete understanding of mantle plumes and plume-generated magmatism,but also for establishing the role of subducted LIP conjugates in the evolution of the Laramide orogeny and other circum-Pacific orogenic events,which are related to the development of large porphyry systems.Given past difficulties in developing consistent geodynamic models for these LIPs,it is useful to consider whether viable alternative geodynamic scenarios may be provided by recent concepts such as melt channel networks and channel-associated lineaments,along with the "two mode"model of melt generation,where a deeply-sourced channel network is superimposed on the plume,evolving and adapting over millions of years.A plume may also interact with transform faults in close proximity to a mid ocean ridge,with the resultant bathymetric character strongly affected by the relative age difference of lithosphere across the fault.Our results suggest that the new two-mode melt models resolve key persistent issues associated with the Shatsky Rise and other LIPs and provide evidence for the existence of a conduit system within plumes that feed deeply-sourced material to the plume head,with flow maintained over considerable distances.The conduit system eventually breaks down during plume-ridge separation and may do so prior to the plume head being freed from the triple junction or spreading ridge.There is evidence for not only plume head capture by a triple junction but also for substantial deformation of the plume stem as the distance between the stem and anchored plume head increases.The evidence suggests that young transforms can serve as pathways for plume material migration,at least in certain plume head-transform configurations.A fortuitous similarity between the path of the Shatsky and Sio plumes,with respect to young spreading ridges and transforms,helps to clarify previously problematic bathymetric features that were not readily ascribed to fixed plumes alone.The Line Island Chain,which has been the subject of a vast number of models,is related mainly to several plumes that passed beneath the same region of oceanic crust,a relatively rare event that has resulted in LIP formation rather than a regular seamount track.Our findings have important implications for the timing and mechanism for the Laramide Orogeny in North America,demonstrating that the Hess Rise conjugate may be much smaller than traditionally thought.The Mid Pacific Mountains conjugate may not exist at all,given large parts of these LIPs were formed at an ‘off-ridge’ site.This needs to be taken into account while considering the effects of conjugate collision on mineralization and orogenic events.
文摘Experiments using electrical resistivity tomography(ERT) have shown promising results in reducing the uncertainty of solute plume characteristics related to estimates based on the analysis of local point measurements only.To explore the similarities and differences between two cross-borehole ERT inversion approaches for characterizing salt tracer plumes,namely the classical smoothness-constrained inversion and a geostatistically based approach,we performed two-dimensional synthetic experiments.Simplifying assumptions about the solute transport model and the electrical forward and inverse model allowed us to study the sensitivity of the ERT inversion approaches towards a variety of basic conditions,including the number of boreholes,measurement schemes,contrast between the plume and background electrical conductivity,use of a priori knowledge,and point conditioning.The results show that geostatistically based and smoothness-constrained inversions of electrical resistance data yield plume characteristics of similar quality,which can be further improved when point measurements are incorporated and advantageous measurement schemes are chosen.As expected,an increased number of boreholes included in the ERT measurement layout can highly improve the quality of inferred plume characteristics,while in this case the benefits of point conditioning and advantageous measurement schemes diminish.Both ERT inversion approaches are similarly sensitive to the noise level of the data and the contrast between the solute plume and background electrical conductivity,and robust with regard to biased input parameters,such as mean concentration,variance,and correlation length of the plume.Although sophisticated inversion schemes have recently become available,in which flow and transport as well as electrical forward models are coupled,these schemes effectively rely on a relatively simple geometrical parameterization of the hydrogeological model.Therefore,we believe that standard uncoupled ERT inverse approaches,like the ones discussed and assessed in this paper,will continue to be important to the imaging and characterization of solute plumes in many real-world applications.
基金supported by the National Natural Science Foundation of China(Nos.52225107,U2106224,U1906234,51822904,and U1706223)the Fundamental Research Funds for the Central Universities(No.202041004)
文摘Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.