期刊文献+
共找到907,622篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Grey DEMATEL and PLS-SEM Model to Investigate COVID-19 Vaccination Intention
1
作者 Phi-Hung Nguyen 《Computers, Materials & Continua》 SCIE EI 2022年第9期5059-5078,共20页
The main objective of this study is to comprehensively investigate individuals’vaccination intention against COVID-19 during the second wave of COVID-19 spread in Vietnam using a novel hybrid approach.First,the Decis... The main objective of this study is to comprehensively investigate individuals’vaccination intention against COVID-19 during the second wave of COVID-19 spread in Vietnam using a novel hybrid approach.First,the Decision-Making Trial and Evaluation Laboratory based on Grey Theory(DEMATEL-G)was employed to explore the critical factors of vaccination intention among individuals.Second,Partial Least Squares-Structural Equation Modeling(PLS-SEM)was applied to test the hypotheses of individual behavioral intention to get the vaccine to prevent the outbreak of COVID-19.A panel of 661 valid respondents was collected from June 2021 to July 2021,and confidentiality was maintained for all data obtained.The results identified that perception of COVID-19 vaccination and trust in vaccination strategy directly associated with individuals’COVID-19 immunization.Hence,the perceived severity of COVID-19 has an indirect impact on COVID-19 vaccination intentions via the perception of the COVID-19 vaccine.These findings indicated that the government’s information about vaccines is necessary for the new phase of vaccination intervention strategies in Vietnam.Therefore,the study suggests that the government needs to give complete information about the role of vaccines prioritizes transparency in official information about COVID-19 vaccines to allay concerns about side effects,allowing for the most appropriate policy formulation and implementation to encourage public vaccination.Future studies can apply PLS-SEM and other MCDM models with the fuzzy,hesitant numbers to re-evaluate the feasibility,validity and reliability of this research’s proposed model. 展开更多
关键词 COVID-19 VACCINATION immunization intervention pls-sem DEMATEL grey theory VIETNAM
在线阅读 下载PDF
我国专业学位研究生教育协同育人影响因素分析——基于PLS-SEM模型 被引量:2
2
作者 张丽华 宁梦妍 王一然 《教育理论与实践》 北大核心 2025年第3期19-23,共5页
专业学位研究生教育是培养高层次应用型人才的重要途径。全面深化协同育人机制是促进专业学位研究生教育从有质量地发展到高质量发展的关键点和突破口。从高校、企业、政府三个利益相关主体出发,通过PLS-SEM模型分析我国专业学位研究生... 专业学位研究生教育是培养高层次应用型人才的重要途径。全面深化协同育人机制是促进专业学位研究生教育从有质量地发展到高质量发展的关键点和突破口。从高校、企业、政府三个利益相关主体出发,通过PLS-SEM模型分析我国专业学位研究生教育协同育人影响因素的研究结果表明:高等学校发表科技成果、政府对境内企业R&D支出以及企业科研人员占比对协同育人产生显著影响。为了更好地促进我国专业学位研究生教育协同育人的发展,应建立高校赋能新质生产力的协同育人机制、多主体共建数字化协同育人平台并发挥资源集聚效应提升协同育人成效。 展开更多
关键词 专业学位研究生教育 协同育人 pls-sem模型 高校 企业 政府
在线阅读 下载PDF
基于PLS-SEM的渭河流域径流演变效应解耦
3
作者 江善虎 江宏 +2 位作者 朱永卫 崔豪 任立良 《水资源保护》 北大核心 2025年第5期223-230,共8页
为定量解耦气候变化、人类活动与植被动态等多因素对流域水循环演变的影响,构建了渭河流域水循环多要素影响解耦框架;利用偏最小二乘结构方程模型(PLS-SEM)、Pearson相关分析与趋势分析法,解耦了1982—2020年渭河流域气候变化、人类活... 为定量解耦气候变化、人类活动与植被动态等多因素对流域水循环演变的影响,构建了渭河流域水循环多要素影响解耦框架;利用偏最小二乘结构方程模型(PLS-SEM)、Pearson相关分析与趋势分析法,解耦了1982—2020年渭河流域气候变化、人类活动、植被动态对渭河流域径流变化的直接和间接效应。结果表明:1982—2001年渭河流域气候变化与人类活动对径流影响的综合效应呈现均衡态势,气候变化和人类活动对径流的综合效应值分别为0.313、-0.315;2002—2020年人类活动的综合效应值(-0.667)显著超越气候变化(0.319),成为流域径流演变的主导驱动因素;1982—2001年径流减少的机制特征为降水主导、多因子协同,降水减少的直接效应与气温升高、植被恢复及人类活动的综合效应共同主导径流衰减过程;2002—2020年径流增加的机制特征为降水主控、工程消减,降水显著增加是导致径流增加的主导因素,而工程调控的直接效应抑制了径流增加的趋势,导致径流仅呈现微弱的恢复态势。 展开更多
关键词 气候变化 人类活动 植被动态 径流演变 pls-sem 渭河流域
在线阅读 下载PDF
创业学习对大学生创业意愿的影响机制研究——基于PLS-SEM模型的分析
4
作者 徐园园 《安徽职业技术学院学报》 2025年第1期89-96,共8页
创业意愿是潜在创业者是否付诸实际创业行动的关键决定因素,在创业研究领域备受关注。本研究基于社会认知理论,选取安徽省500名大学生作为调查样本,采用问卷调查法收集数据,借助统计分析软件,运用结构方程模型(SEM)探究创业学习对创业... 创业意愿是潜在创业者是否付诸实际创业行动的关键决定因素,在创业研究领域备受关注。本研究基于社会认知理论,选取安徽省500名大学生作为调查样本,采用问卷调查法收集数据,借助统计分析软件,运用结构方程模型(SEM)探究创业学习对创业意愿的内在作用机制。研究结果显示,创业学习对创业意愿及创业自我效能感均有显著正向影响;创业自我效能感对创业意愿有显著正向作用,且在创业学习与创业意愿间起部分中介效应。基于研究结论,本文提出了相应的对策建议。 展开更多
关键词 创业学习 创业意愿 创业自我效能感 pls-sem模型
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
5
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于PLS-SEM模型的适老化橱柜设计影响因素分析
6
作者 张玲玲 戴向东 +3 位作者 李佳莹 罗方 吕宙 肖文波 《中南林业科技大学学报》 北大核心 2025年第4期211-224,共14页
【目的】精准获取老年人对橱柜使用的需求,通过构建结构方程模型分析适老化橱柜设计的关键影响因素,为设计适老化橱柜及制定其产品市场营销策略提供重要的数据支持。【方法】以60岁以上的老年人为研究对象,采用问卷量表法,通过发放457... 【目的】精准获取老年人对橱柜使用的需求,通过构建结构方程模型分析适老化橱柜设计的关键影响因素,为设计适老化橱柜及制定其产品市场营销策略提供重要的数据支持。【方法】以60岁以上的老年人为研究对象,采用问卷量表法,通过发放457份有效问卷收集影响适老化橱柜设计的自变量指标数据,并运用李克特五级量表分析,量化各指标对适老化橱柜设计的影响度。从材料、尺寸、布局、功能、色彩和智能6个方面选取36项设计指标,以创新性作为中介变量,消费意愿作为因变量,通过偏最小二乘结构方程模型(PLS-SEM)对影响适老化橱柜设计的关键因素进行实证分析。【结果】1)在量表信效度检验中,布局、材料、尺寸、功能、色彩、智能、创新和消费8个维度的克隆巴赫系数均高于0.86,各测量题项间具有较强的内部关联性和一致性;组成信度均超过0.8,进一步证实量表具备高度的可靠性;平均抽取变异量(AVE)均高于0.7,显示出各变量具备良好的聚合效能,本研究构建的适老化橱柜设计测量模型在信度与效度方面均具有良好表现。2)采用amos软件对量表进行验证,区分效度检验各个维度所对应的AVE平方根都高于它与其他所有变量的相关系数的平方值,证明各变量之间具有良好的区分效度,检验成立。3)在PLS-SEM建模中显示构成各维度的因子荷载系数均较高,但不同指标在其所属维度内的荷载系数存在差异,应优先考虑荷载系数较高的指标,他们对潜在变量的解释能力更强。4)通过假设验证,H1~H6的路径系数均通过显著性检验(P<0.05),H7~H12对不同路径的间接效应通过显著性检验(P<0.05),表明先前假设在一定显著性水平下成立。【结论】研究结果得出一系列对适老化橱柜设计至关重要的影响因素,功能对购买意愿的影响系数最高,智能因素的影响系数相对较低,产品的功能特性是适老化橱柜设计最关键的因素之一,为适老化橱柜设计和市场营销策略的制定提供了理论依据。 展开更多
关键词 橱柜 适老化 智能化 适配性 pls-sem模型
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
7
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
基于PLS-SEM的生态系统健康变化及驱动因素分析——以京津冀地区为例
8
作者 闫语 秦耀伟 +4 位作者 赵振宇 东嘉琪 李双江 曹建生 肖捷颖 《环境工程技术学报》 北大核心 2025年第4期1387-1397,共11页
明确区域生态系统健康时空变化及其驱动因素影响途径,对生态系统管理和恢复具有重要意义。基于“活力-组织-弹性-服务”模型,评估2000—2022年京津冀地区生态系统健康水平,从全局和分区(山区、平原)角度分析其动态演变特征,利用偏最小二... 明确区域生态系统健康时空变化及其驱动因素影响途径,对生态系统管理和恢复具有重要意义。基于“活力-组织-弹性-服务”模型,评估2000—2022年京津冀地区生态系统健康水平,从全局和分区(山区、平原)角度分析其动态演变特征,利用偏最小二乘-结构方程模型(PLS-SEM)分析人为与自然因素对生态系统健康的影响路径,运用最优参数地理探测器模型识别主要驱动因子。结果表明:2000—2022年京津冀地区生态系统健康呈改善趋势,其中山区持续增长,平原为先降后升,空间分布呈山区高平原低的特征,山区北部和西部生态系统健康改善显著;人类活动对生态系统健康产生的负面影响高于自然因素产生的正面影响,全局和山区的地形和植被覆盖产生较高正面影响,景观组成则产生了显著的直接负面影响,而社会经济因素产生间接负面影响;平原地区景观组成、地形和植被覆盖因素均产生较高的直接正面影响,社会经济则产生为显著负面影响。单因子分析表明,林地及建设用地占比、坡度和高程是全局生态系统健康的主要驱动因子,林地占比、耕地占比、建设用地占比和归一化植被指数为山区的主要驱动因子,而建设用地占比、归一化植被指数和夜间灯光为平原的主要驱动因子。建议基于山区与平原生态系统健康驱动因子分区施策,加强山区生态保护政策的实施,优化平原地区土地利用与植被覆盖,以实现区域生态可持续发展。 展开更多
关键词 生态系统健康 “活力-组织-弹性-服务”模型 驱动因素 偏最小二乘-结构方程模型(pls-sem) 京津冀地区
在线阅读 下载PDF
高中生“原子结构”学习成效影响因素的PLS-SEM实证研究
9
作者 金雄鹰 蒋永贵 《化学教学》 北大核心 2025年第11期20-26,共7页
采用PLS-SEM模型探讨高中生“原子结构”学习成效的影响因素,发现化学自我效能感、化学空间能力、学习态度、学习策略及教师支持是重要因素。化学空间能力对学习成效影响最大,同时化学自我效能感在多个关系中起中介作用。学习态度和学... 采用PLS-SEM模型探讨高中生“原子结构”学习成效的影响因素,发现化学自我效能感、化学空间能力、学习态度、学习策略及教师支持是重要因素。化学空间能力对学习成效影响最大,同时化学自我效能感在多个关系中起中介作用。学习态度和学习策略直接影响化学自我效能感和化学空间能力,进而影响学习成效。教师支持通过影响学习策略和态度对学习成效产生积极作用。研究建议教师要因材施教,强化空间能力训练,优化学生自我效能感,进而提高学习成效。 展开更多
关键词 原子结构 学习成效 影响因素 pls-sem模型
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
10
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
11
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
基于PLS-SEM的全过程工程咨询模式应用制约因素的作用机制研究
12
作者 王舒 李燕 +1 位作者 蒲新月 何玲 《科技和产业》 2025年第10期46-52,共7页
通过专家访谈、相关文献研究和实践经验的基础上,结合全过程工程咨询模式自身的特征,提出相应的假设并构建了全过程工程咨询模式应用制约因素作用机制模型。基于PLS-SEM法对机制模型进行验证,验证结果表明:政策保障、市场培育、服务能... 通过专家访谈、相关文献研究和实践经验的基础上,结合全过程工程咨询模式自身的特征,提出相应的假设并构建了全过程工程咨询模式应用制约因素作用机制模型。基于PLS-SEM法对机制模型进行验证,验证结果表明:政策保障、市场培育、服务能力、社会意识均直接影响全过程工程咨询模式的应用,直接影响效应为政策保障>服务能力>社会意识>市场培育;市场培育和服务能力分别在政策保障与全过程工程咨询模式应用之间起部分中介作用。 展开更多
关键词 全过程工程咨询模式 制约因素 作用机制 pls-sem
在线阅读 下载PDF
区域工业物流成本优化与货运量预测:基于PLS-SEM与ARIMA模型的实证研究
13
作者 蒋菲 杨鹏 凌斯凡 《供应链管理》 2025年第8期25-39,共15页
文章以广西地区为研究对象,基于总成本理论与成本互补理论构建了工业物流全链条成本模型,通过PLS-SEM实证分析揭示了基础设施水平、集疏运体系效率、交通联动与智能化水平及管理服务质量对运输、仓储和信息化改造成本的直接影响与间接... 文章以广西地区为研究对象,基于总成本理论与成本互补理论构建了工业物流全链条成本模型,通过PLS-SEM实证分析揭示了基础设施水平、集疏运体系效率、交通联动与智能化水平及管理服务质量对运输、仓储和信息化改造成本的直接影响与间接影响。实证结果表明,基础设施滞后和信息化改造不足是导致广西工业物流成本高企的主要驱动因素,各关键因素之间存在显著协同效应,其不平衡发展制约物流成本整体下降。为进一步增强区域物流网络优化的前瞻性决策支持,文章创新性地引入货运量预测模块,采用ARIMA模型结合多元回归分析,对未来广西公路、铁路及水路运输货运量进行定量预测。预测结果显示,尽管公路运输货运量呈现稳步增长趋势,但铁路和水路运输增速更为显著,反映出多式联运体系构建的重要性。该预测数据为物流资源合理配置和基础设施投资提供了量化依据,进一步验证物流成本优化与区域运输需求之间的内在联动机制。研究不仅从理论上构建涵盖运输、仓储及信息化改造等多个维度的工业物流成本模型,还通过货运量预测扩展了研究视角,为区域物流体系多式联运优化提供数据支撑与决策依据,为政府和企业制定降低物流成本、提升运营效率及实现区域经济高质量发展政策提供了切实可行的策略建议。 展开更多
关键词 工业物流成本 多式联运 pls-sem ARIMA 货运量预测 降本增效
在线阅读 下载PDF
基于UTAUT2和PLS-SEM大语言模型平台的用户交互行为影响因素研究
14
作者 崔鑫龙 王建华 +1 位作者 彭浩 陈渝 《印刷与数字媒体技术研究》 北大核心 2025年第5期78-90,共13页
大语言模型平台凭借高效的运算速率和智能交互表现而被各领域深度应用,但对其用户行为驱动机制的系统性认知尚缺乏深入理解。本研究通过探讨大语言模型平台用户交互行为影响因素及作用路径,解析关键变量间内生因素,揭示用户行为驱动机... 大语言模型平台凭借高效的运算速率和智能交互表现而被各领域深度应用,但对其用户行为驱动机制的系统性认知尚缺乏深入理解。本研究通过探讨大语言模型平台用户交互行为影响因素及作用路径,解析关键变量间内生因素,揭示用户行为驱动机制与多维路径效应。通过整合UTAUT2与TAM核心变量,形成理论框架并提出假设路径,以此构建基于偏最小二乘法结构方程模型(PLS-SEM)的分析模型,并采用Smart PLS 4.1分析问卷以验证各变量间解释效度和路径效应的作用机制。结果表明,感知有用性、感知易用性、社会影响和习惯对行为意愿具有显著正向影响,便利条件直接促发使用行为;而价值价格对行为意愿呈负向影响,行为意愿在各前因变量间起部分中介作用,便利条件通过“机会驱动”路径能直接触发使用行为。基于研究结果,提出优化环境支持、透明化成本结构、融合功能性与娱乐性的建议,为大语言模型平台用户行为优化提供理论框架与实践路径。 展开更多
关键词 大语言模型平台 UTAUT2 交互行为 pls-sem 使用意愿
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
15
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
16
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
17
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
18
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
19
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
基于PLS-SEM的中国公立医院集体领导力评价工具验证
20
作者 赵金红 刘庭芳 《中国医院》 北大核心 2025年第3期26-31,共6页
目的:对已构建的中国公立医院领导力评价指标体系进行验证,检验其信度和效度。方法:选取东部、中部和西部9所公立医院开展问卷调查,采用探索性因子分析、验证性因子分析和偏最小二乘法结构方程模型(PLS-SEM)对评价工具的信度和效度进行... 目的:对已构建的中国公立医院领导力评价指标体系进行验证,检验其信度和效度。方法:选取东部、中部和西部9所公立医院开展问卷调查,采用探索性因子分析、验证性因子分析和偏最小二乘法结构方程模型(PLS-SEM)对评价工具的信度和效度进行验证。结果:通过EFA得出评价工具的3个关键因素,分别是道德规范、领导特质和管理风格。PLS-SEM检验结果显示,管理风格、领导特质和道德规范对领导力的总效应分别为0.558、0.389和0.112,工作作风、团队建设、魅力、员工关怀、能力、价值观和人际关系的总效应分别为0.184、0.180、0.151、0.147、0.141、0.115和0.073。结论:本研究聚焦于中国公立医院领导班子集体领导力的科学测量,构建了以行为和能力为导向的公立医院集体领导力评价指标体系,量化了公立医院领导班子的领导力水平。从中层管理人员视角来评价医院领导班子的领导力,有助于中国医院领导力科学评估评价领域的发展。 展开更多
关键词 公立医院 领导力 评价工具 pls-sem
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部