Traditional packaging plastics derived from fossil fuels for perishable foods have caused severe environmental pollution and resource depletion.To promote sustainable development and reduce wastage of perishable produ...Traditional packaging plastics derived from fossil fuels for perishable foods have caused severe environmental pollution and resource depletion.To promote sustainable development and reduce wastage of perishable products,there is a significant challenge in developing biobased packaging plastics that offer excellent preservation,satisfactory mechanical performance,and inherent degradability.In this study,poly(urethane-urea)(PUU)plastics are fabricated using a one-pot polyaddition reaction involving castor oil(CO),tannic acid(TA),lysine-derived ethyl 2,6-diisocyanatohexanoate(LDI),and H2O.The resulting PUU plastics demonstrate a high breaking strength of about 32.7 MPa and a strain at break of ca.102%.Due to the reversibility of hydrogen bonds,PUU plastics can be easily shaped into various forms.They are non-cytotoxic and suitable for food packaging.With a high TA content of ca.38.2 wt%,PUU plastics exhibit excellent antioxidant capacity.Consequently,PUU plastics show outstanding freshness preservation performance,extending the shelf life of cherry tomatoes and winter jujubes for at least 8 days at room temperature.Importantly,PUU plastics can autonomously degrade into non-toxic substances within ca.298 days when buried in soil.展开更多
Against the backdrop of the global push for environmental protection and the reduction of plastic pollution,the research and development of alternatives to daily disposable plastic products such as straws have become ...Against the backdrop of the global push for environmental protection and the reduction of plastic pollution,the research and development of alternatives to daily disposable plastic products such as straws have become a hot topic in the environmental protection field.Traditional plastic straws are difficult to degrade,imposing a severe burden on the environment.Meanwhile,existing alternatives like paper straws and PLA(polylactic acid)straws also have numerous drawbacks.展开更多
As the main component of electronic products,plastics contain complex and diverse metal additives.Recycling process is not conducive to stable existence of metal additives in electronic plastics.Once the e-waste plast...As the main component of electronic products,plastics contain complex and diverse metal additives.Recycling process is not conducive to stable existence of metal additives in electronic plastics.Once the e-waste plastics enter the environment,they will continue to release harmful metals into environment after aging,causing serious hazards.This study delved into the analysis and comparison of metal content of e-waste plastics,elucidating aging process and metal leaching behavior over a 112-day natural light exposure period.The findings underscored that metal content in recycled plastics surpassed that in their new counterparts.Specifically,Ti content in new plastics remained below 100 mg/kg,while recycled plastics exhibited Ti content surpassing 100 mg/kg threshold.Throughout prolonged natural light exposure,metals such as Zn,Ba and Sb demonstrated a heightened likelihood of release from electronic plastics in comparison to other metals.The aging process during light exposure led to fragmentation of electronic plastics,accompanied by a reduction in particle size.Notably,the particle size reduction was more pronounced in poly acrylonitrile butadiene styrene(ABS)and recycled ABS,experiencing reductions of 40µm and 85µm,respectively.This phenomenon was attributed to the presence of polybutadiene structural units,which proved more susceptible to aging.Along with the breaking of plastics,the ABS plastics released metal species such as Pb,Cd,Ni,Al that had not been detected in other plastics solutions.The collective evidence from this study suggested that ABS and recycled ABS electronic plastics might pose a heightened potential environmental risk compared to other electronic plastics.展开更多
To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
The widespread use of plastic waste has caused significant environmental pollution,becoming a focal point of global concern,particularly the challenge of dechlorination in mixed plastic waste.Selective dissolution is ...The widespread use of plastic waste has caused significant environmental pollution,becoming a focal point of global concern,particularly the challenge of dechlorination in mixed plastic waste.Selective dissolution is a promising plastic chemical recycling technology that offers benefits such as simple processes,convenient operation,and recyclable solvents.However,selecting suitable solvents remains a challenge.This study establishes a virtual solvent database containing 530 common inorganic and organic solvents.By calculating theσ-profile of polyvinyl chloride(PVC)and polyethylene(PE)models using quantum mechanical calculations and employing the conductor-like screening model for real solvents(COSMO-RS)method,the solubility performance of these solvents for PVC and PE at different temperatures was predicted.The results demonstrate the high accuracy of the COSMO-RS method in predicting solubility.By comparing the solubility differences between PVC and PE in different solvents,a series of solvents suitable for selectively removing PVC from mixed plastics were identified,for example,N-methyl-2-pyrrolidone(NMP),dimethyl sulfoxide(DMSO),tetrahydrofuran(THF),and N,Ndimethylacetamide(DMAc).This method provides a novel solution to the solvent selection challenge in plastic chemical recycling,potentially shortening the research and development period,reducing experimental costs,and promoting the development of green and refined waste plastic recycling processes.展开更多
Electrocatalysis offers efficient and targeted conversion of monomers derived from waste polyester plastics to chemical products under ambient temperature and pressure conditions.This review provides analysis of resea...Electrocatalysis offers efficient and targeted conversion of monomers derived from waste polyester plastics to chemical products under ambient temperature and pressure conditions.This review provides analysis of research on electrochemical upgrading of monomers derived from waste polyester plastics published from2021 to present.Factors for assessing upgrading of waste polyester plastics include alkaline hydrolysis pretreatment,indices of electrochemical reaction process(activity,stability,and techno-economic a nalysis),separation,and product recovery.Types of depolymerization monomers and their value-added products are summarized along with electrocatalytic mechanisms and reaction pathways.Notably,cathode coupled reactions offer significant value for anodic waste plastic oxidation during electrolysis processes.Development of bifunctional electrocatalysts can reduce the cost of coupled systems and complexity of the electrolyzer.Upgrading and recycling of waste plastic monomers using electrocatalytic technology should undergo downstream processing to form high-value products containing C-N and C-S derived functional groups obtained from depolymerized monomers,Electrochemical conversion and upgrading of monomers derived from waste polyester plastics can contribute to industrialization and global economies and help to realize environmental sustainability.展开更多
In recent years,the biodegradable plastics has extensively used in industry,agriculture,and daily life.Herein,the effects of two biodegradable microplastics(BMPs),poly(butyleneadipate-co-terephthalate)(PBAT)and polyhy...In recent years,the biodegradable plastics has extensively used in industry,agriculture,and daily life.Herein,the effects of two biodegradable microplastics(BMPs),poly(butyleneadipate-co-terephthalate)(PBAT)and polyhydroxyalkanoate(PHA),on soil sulfamethoxazole(SMX)degradation and sul genes development were comparatively studied based on the type,dosage,and state.The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT>PHA and high dose>low dose.Meanwhile virgin PBAT significantly reduced soil pH.In general,the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes,with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes.The driving effects of BMPs on soil microbial diversity following the same order as that on DOC.Specific bacteria stimulated by BMPs,such as Arthrobacter and two genera affiliated with phylum TM7,accounted for the accelerated degradation of SMX.Intriguingly,UV-aging hindered the release of DOC from BMPs and the reduction in pH,mitigated the stimulation of microbial communities,and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation.Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.展开更多
Insects have become an efficient and eco-friendly bioreactor for plastics and even micro/nano-plastics biodegradation.However,the optimal conditions for rearing insects to maximize plastic biodegradation and the under...Insects have become an efficient and eco-friendly bioreactor for plastics and even micro/nano-plastics biodegradation.However,the optimal conditions for rearing insects to maximize plastic biodegradation and the underlying mechanisms remain unclear,hindering its practical applications.We investigated the effects of multiple rearing factors on plastics degradation efficiency of Tenebrio molitor larvae,including larval instar,water addition frequency,plastic specific surface area and plastic types.The functional gut microbes and enzymes associated with the improved efficiency were further explored.Our findings revealed that adult larvae achieved the highest plastics degradation efficiency when receiving regular water additions without causing drowning of insects on hydrophobic plastics.Additionally,they effectively ingested foam plastics of polystyrene,polyethylene and polyurethane without prior comminution and densification.The biodegradation processes involving oxidation,cleavage and depolymerization of plastics were all demonstrated.Furthermore,foam plastic type-dependent functional microbes and enzymes that contributed to the efficient plastic degradationwere identified.Thiswork provides valuable insights into the practical applications of insects for sustainable plastics biodegradation.展开更多
We identified the antimony species present in a wide variety of plastic samples by X ray absorption spectroscopy(XAS)at the Sb L_(3)-edge.The samples contained different concentrations of antimony(Sb),ranging from PET...We identified the antimony species present in a wide variety of plastic samples by X ray absorption spectroscopy(XAS)at the Sb L_(3)-edge.The samples contained different concentrations of antimony(Sb),ranging from PET bottles in which Sb compounds are used as catalysts,with concentrations around 300 mg/kg,to electrical equipment in which the element is used as a flame retardant,with concentrations of several tens of thousands of mg/kg.Although the shape of the spectra at the L_(3)-edge is quite similar for all Sb reference materials,we were able to identify antimony glycolate or acetate in PET bottles,bound organic Sb in c-PET trays and senarmontite in electrical materials as themain Sb components.In samples with high Ca content(e.g.,electrical objects,some c-PET food trays and textiles)the Ca Ka emission line interferes with the Sb La line by introducing a high background which reduces the signal-to-noise ratio in the Sb XAS spectrum,resulting in noisy and distorted spectra.The element-resolved map on a PET bottle sample revealed both Sb and Ca hot spots of around 10-20 microns in size,with no correlation.展开更多
Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano...Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater,together with the influence of their properties and effects of environmental factors on their transport.However,the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation.To provide systematic theoretical support for that,this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system,provides a comprehensive introduction of their sources and fate,and classifies the transport mechanisms into mechanical transport,physicochemical transport and biological processes assisted transport fromthe perspectives ofmechanical stress,physicochemical reactions,and bioturbation,respectively.Ultimately,this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater,themicroorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation.Overall,this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.展开更多
Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and ...Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals.However,studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored.In this review,we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics,especially for poly(phenylene sulfide)(PPS),poly(aryl ether)s including poly(ether ether ketone)(PEEK),polysulfone(PSU),polyphenylsulfone(PPSU)and polyethersulfone(PES).We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field.展开更多
Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemica...Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.展开更多
Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and ...Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and biological properties,including soil biota,are considered adverse for soils.Due to their small size and porous surface,microplastics can also be a new environmental concern because of their ability to act as carriers of contaminants or diseases.展开更多
Dear Editor,Plastics have been ubiquitous in the environment due to their high amounts of production and application(Geyer et al.,2017).In 2021,annual global plastic production increased to 39.07 billion tons(Rede et ...Dear Editor,Plastics have been ubiquitous in the environment due to their high amounts of production and application(Geyer et al.,2017).In 2021,annual global plastic production increased to 39.07 billion tons(Rede et al.,2023).Plastics undergo weathering,photolysis,and other environmental effects and form emerging contaminants with small particle sizes that can easily migrate,i.e.,microplastics(MPs,<5 mm)(Auta et al.,2017).展开更多
The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based pl...The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based plastics,there has been a notable transition towards the creation of biodegradable alternatives sourced from natural materials.Biofibres and bioplastics,especially those derived from agricultural waste,have garnered significant attention for their prospective uses in food packaging,biomedical sciences,and sustainable manufacturing.This study examines the viability of employing banana peel as a natural and environmentally sustainable raw material for the production of biodegradable bioplastic sheets.Due to its abundant polysaccharides and lignocellulosic fibers,banana peel presents advantageous structural and mechanical characteristics for bioplastic manufacturing.Experimental findings demonstrate that bioplastic derived from banana peels has enhanced biodegradability and environmental compatibility relative to traditional synthetic plastics,positioning it as a feasible alternative to mitigate the worldwide plastic waste epidemic.An optimal formulation was constructed using Design Expert software,comprising 55.38 g of banana peel,27.63 g of fish scales,and 20 g of chitosan powder.This formulation improves the film’s tensile strength,flexibility,and degradation rate,ensuring its efficacy in industrial applications including food packaging and molding.The study’s results highlight the promise of bioplastics made from banana peels as an economical and sustainable alternative,decreasing dependence on petroleum-based plastics and alleviating environmental pollution.展开更多
Micro-and nano-plastics,defined as plastic particles measuring≤5 mm,represent a class of contaminants of emerging concern.These particles are ubiquitous in aquatic environments,posing significant threats to both fres...Micro-and nano-plastics,defined as plastic particles measuring≤5 mm,represent a class of contaminants of emerging concern.These particles are ubiquitous in aquatic environments,posing significant threats to both freshwater and marine organisms.The accumulation of micro-and nanoplastics in aquatic biota can lead to physical harm and chemical hazards,as these particles can serve as vectors for transporting toxic substances.As the research community strives to understand the transport and fate of micro-and nano-plastics,as well as their ecotoxicological implications,the scope of research questions continues to broaden.In response to these developments,the Journal of Oceanology and Limnology has recently launched a special issue entitled“Micro-and nano-plastics:an emerging contaminant in marine and freshwater ecosystems.”展开更多
Electrocatalytic valorization of disused poly(ethylene terephthalate)(PET)plastics into value-added chemicals emerges as a potential approach to address plastic pollution and resources upgrading,but it faces challenge...Electrocatalytic valorization of disused poly(ethylene terephthalate)(PET)plastics into value-added chemicals emerges as a potential approach to address plastic pollution and resources upgrading,but it faces challenges in the development of efficient catalysts for PET-derived ethylene glycol(EG)electrooxidation.Herein,we proposed pyramid arrays on sheet Fe-doped NiO/FeNi_(3)(SPA-NiFeO_(x)/FeNi_(3))heterostructure,which is derived from the pyrolysis of MOF-on-MOF heterostructure growth triggered by graphene quantum dots(GQDs).Such SPA-NiFeO_(x)/FeNi_(3)exhibits superior catalytic performance on the electrooxidation of EG(EGOR)from PET hydrolysate,with a formic acid(FA)selectivity of 91.5%and a Faradaic efficiency of 92%.The ligand effect of GQDs in both the catalyst design and improved electrocatalytic performance was studied with combined spectroscopy analysis and theoretical calculations,which revealed that such spatially separated NiFeO_(x)and FeNi_(3)components by GQDs possess more active sites to anticipate in electrocatalytic EGOR,and the large sp2 domains in GQDs possess a strong electron-withdrawing ability to reduce the electron density of bonded Ni and Fe,resulting in high-valenced Ni^(δ+)/Fe^(δ+)in FeNi_(3)and Ni(2+δ)in NiO,respectively.Furthermore,the coordination number of Ni and Fe centers was lowered due to the steric effect of GQDs.Therefore,the adsorption of EG on Ni^(δ+)for cascade dehydrogenation and C–C bond cleavage led to adsorbed FA that transferred to adjacent Fe for desorption,which was promoted by the enrichment of OH−on nearby Ni^((2+δ))sites,along with optimized Gibbs free energy change in the multistep reaction pathway.This work provides an efficient multi-active-site catalyst for disused PET plastics valorization,thereby presenting a new approach to enhance the efficiency of PET plastics valorization reactions.展开更多
A massive amount of plastic waste has presented an immense management challenge.This escalating ecological damage,coupled with the detrimental effects of plastics infiltrating the marine food web,poses a significant t...A massive amount of plastic waste has presented an immense management challenge.This escalating ecological damage,coupled with the detrimental effects of plastics infiltrating the marine food web,poses a significant threat to human livelihoods.To combat this,there is a call for the development of plastic detection algorithms using remote sensing data.Here we tested a new index,referred to index_(MP),to detect clusters of floating macro plastics in the ocean using satellite imagery.The index_(MP)was applied to convolution high-pass filtered(3×3)Sentinel 2 Level 1 C images,showing the potential to reduce atmospheric interference and enhance the object edges,thereby improving the clarity of detection.In the analysis,we used three scatter plots to identify and assess plastic pixels.To differentiate the common features of plastic from non-plastic objects,the Sentinel 2 bands 5,8,and 9 were plotted against index_(MP)calculated and convolution high-pass filtered Level 1 C(CHPIC)images.The plastic pixels,clustering in the three scatter plots,showed positive‘X’,i.e.,CHPIC image value and‘Y’,i.e.,each band 5,8,and 9 reflectance values,along with a CHPIC image value exceeding 0.05.Using the index_(MP)and scatter plot analysis,we identified plastic pixels containing 14%or more plastic bottles.Detection of other types of plastics,such as fishing nets and plastic bags,required pixel proportions greater than 50%.Hence,plastic bottles were notably responsive even at a low pixel fraction.We further explored the classification of plastic and non-plastic objects by analyzing reed(plant)pixels;the differentiation between plastic and reed was conducted in the band 5 and 9 scatter plots.展开更多
The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substanti...The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substantial challenges.In this study,we developed nitrogen-doped(N-doped)carbon materials through scalable carbonization of MF resin plastic waste.This metal-free N-doped carbon catalyst achieved a hydrogen peroxide(H_(2)O_(2))production rate of 971.6 mmol gcatalyst^(-1)h^(-1)with a Faradaic efficiency for H_(2)O_(2)(FEH_(2)O_(2))exceeding 90%under acidic conditions.Additionally,a flow cell utilizing this carbon catalyst demonstrated a production rate of 11.3 mol cm^(-2)h^(-1)(22.5 mol g_(catalyst)^(-1)h^(-1))and maintained a record-high current density of approximately 530 mA cm^(-2)over 300 h.In-situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations revealed the presence of porphyrin-like carbon defects,which serve as active sites for the continuous and stable generation of^(*)OOH species.The nitrogen-doped carbon materials obtained from large-scale carbonization of MF plastic waste exhibit abundant active sites,making them highly promising electrocatalysts for the two-electron oxygen reduction reaction(2e^(-)ORR).展开更多
With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions ...With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21935004 and 22350011)。
文摘Traditional packaging plastics derived from fossil fuels for perishable foods have caused severe environmental pollution and resource depletion.To promote sustainable development and reduce wastage of perishable products,there is a significant challenge in developing biobased packaging plastics that offer excellent preservation,satisfactory mechanical performance,and inherent degradability.In this study,poly(urethane-urea)(PUU)plastics are fabricated using a one-pot polyaddition reaction involving castor oil(CO),tannic acid(TA),lysine-derived ethyl 2,6-diisocyanatohexanoate(LDI),and H2O.The resulting PUU plastics demonstrate a high breaking strength of about 32.7 MPa and a strain at break of ca.102%.Due to the reversibility of hydrogen bonds,PUU plastics can be easily shaped into various forms.They are non-cytotoxic and suitable for food packaging.With a high TA content of ca.38.2 wt%,PUU plastics exhibit excellent antioxidant capacity.Consequently,PUU plastics show outstanding freshness preservation performance,extending the shelf life of cherry tomatoes and winter jujubes for at least 8 days at room temperature.Importantly,PUU plastics can autonomously degrade into non-toxic substances within ca.298 days when buried in soil.
文摘Against the backdrop of the global push for environmental protection and the reduction of plastic pollution,the research and development of alternatives to daily disposable plastic products such as straws have become a hot topic in the environmental protection field.Traditional plastic straws are difficult to degrade,imposing a severe burden on the environment.Meanwhile,existing alternatives like paper straws and PLA(polylactic acid)straws also have numerous drawbacks.
基金the Natural Science Foundation of Guangdong Province(No.2021B1515020041)the National Natural Science Foundation of China(No.42277403)+4 种基金the Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(NSFC-UNEP)(No:32261143459)the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(No.2023B1212060002)the Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000024)the High-level University Special Fund(No.G03050K001)the Research Projects of the General Administration of Customs(No.2022HK060)for financial support.
文摘As the main component of electronic products,plastics contain complex and diverse metal additives.Recycling process is not conducive to stable existence of metal additives in electronic plastics.Once the e-waste plastics enter the environment,they will continue to release harmful metals into environment after aging,causing serious hazards.This study delved into the analysis and comparison of metal content of e-waste plastics,elucidating aging process and metal leaching behavior over a 112-day natural light exposure period.The findings underscored that metal content in recycled plastics surpassed that in their new counterparts.Specifically,Ti content in new plastics remained below 100 mg/kg,while recycled plastics exhibited Ti content surpassing 100 mg/kg threshold.Throughout prolonged natural light exposure,metals such as Zn,Ba and Sb demonstrated a heightened likelihood of release from electronic plastics in comparison to other metals.The aging process during light exposure led to fragmentation of electronic plastics,accompanied by a reduction in particle size.Notably,the particle size reduction was more pronounced in poly acrylonitrile butadiene styrene(ABS)and recycled ABS,experiencing reductions of 40µm and 85µm,respectively.This phenomenon was attributed to the presence of polybutadiene structural units,which proved more susceptible to aging.Along with the breaking of plastics,the ABS plastics released metal species such as Pb,Cd,Ni,Al that had not been detected in other plastics solutions.The collective evidence from this study suggested that ABS and recycled ABS electronic plastics might pose a heightened potential environmental risk compared to other electronic plastics.
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
基金financially supported by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.the National Natural Science Foundation of China(22302220)+2 种基金the Shanxi Province Science Foundation for Youth(202203021222403)Funding support was also received from the Synfuels China Co.,Ltd.the Institute of Coal Chemistry,Chinese Academy of Sciences。
文摘The widespread use of plastic waste has caused significant environmental pollution,becoming a focal point of global concern,particularly the challenge of dechlorination in mixed plastic waste.Selective dissolution is a promising plastic chemical recycling technology that offers benefits such as simple processes,convenient operation,and recyclable solvents.However,selecting suitable solvents remains a challenge.This study establishes a virtual solvent database containing 530 common inorganic and organic solvents.By calculating theσ-profile of polyvinyl chloride(PVC)and polyethylene(PE)models using quantum mechanical calculations and employing the conductor-like screening model for real solvents(COSMO-RS)method,the solubility performance of these solvents for PVC and PE at different temperatures was predicted.The results demonstrate the high accuracy of the COSMO-RS method in predicting solubility.By comparing the solubility differences between PVC and PE in different solvents,a series of solvents suitable for selectively removing PVC from mixed plastics were identified,for example,N-methyl-2-pyrrolidone(NMP),dimethyl sulfoxide(DMSO),tetrahydrofuran(THF),and N,Ndimethylacetamide(DMAc).This method provides a novel solution to the solvent selection challenge in plastic chemical recycling,potentially shortening the research and development period,reducing experimental costs,and promoting the development of green and refined waste plastic recycling processes.
基金financially supported by the National Natural Science Foundation of China(Nos.22178181)the Natural Science Fund of Tianjin(No.21JCZDJC00180)the Fundamental Research Funds for the Central Universities(Nankai University(No.63243129)).
文摘Electrocatalysis offers efficient and targeted conversion of monomers derived from waste polyester plastics to chemical products under ambient temperature and pressure conditions.This review provides analysis of research on electrochemical upgrading of monomers derived from waste polyester plastics published from2021 to present.Factors for assessing upgrading of waste polyester plastics include alkaline hydrolysis pretreatment,indices of electrochemical reaction process(activity,stability,and techno-economic a nalysis),separation,and product recovery.Types of depolymerization monomers and their value-added products are summarized along with electrocatalytic mechanisms and reaction pathways.Notably,cathode coupled reactions offer significant value for anodic waste plastic oxidation during electrolysis processes.Development of bifunctional electrocatalysts can reduce the cost of coupled systems and complexity of the electrolyzer.Upgrading and recycling of waste plastic monomers using electrocatalytic technology should undergo downstream processing to form high-value products containing C-N and C-S derived functional groups obtained from depolymerized monomers,Electrochemical conversion and upgrading of monomers derived from waste polyester plastics can contribute to industrialization and global economies and help to realize environmental sustainability.
基金supported by the National Key Plan for Research and Development of China(Nos.2022YFE0120300 and 2020YFC1806902)the National Natural Science Foundation of China(Nos.42161134002,81991535,and 41877058)the Natural Science Foundation of Fujian Province,China(No.2022J01509).
文摘In recent years,the biodegradable plastics has extensively used in industry,agriculture,and daily life.Herein,the effects of two biodegradable microplastics(BMPs),poly(butyleneadipate-co-terephthalate)(PBAT)and polyhydroxyalkanoate(PHA),on soil sulfamethoxazole(SMX)degradation and sul genes development were comparatively studied based on the type,dosage,and state.The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT>PHA and high dose>low dose.Meanwhile virgin PBAT significantly reduced soil pH.In general,the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes,with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes.The driving effects of BMPs on soil microbial diversity following the same order as that on DOC.Specific bacteria stimulated by BMPs,such as Arthrobacter and two genera affiliated with phylum TM7,accounted for the accelerated degradation of SMX.Intriguingly,UV-aging hindered the release of DOC from BMPs and the reduction in pH,mitigated the stimulation of microbial communities,and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation.Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.
基金supported by the National Natural Science Foundation of China(No.22241603).
文摘Insects have become an efficient and eco-friendly bioreactor for plastics and even micro/nano-plastics biodegradation.However,the optimal conditions for rearing insects to maximize plastic biodegradation and the underlying mechanisms remain unclear,hindering its practical applications.We investigated the effects of multiple rearing factors on plastics degradation efficiency of Tenebrio molitor larvae,including larval instar,water addition frequency,plastic specific surface area and plastic types.The functional gut microbes and enzymes associated with the improved efficiency were further explored.Our findings revealed that adult larvae achieved the highest plastics degradation efficiency when receiving regular water additions without causing drowning of insects on hydrophobic plastics.Additionally,they effectively ingested foam plastics of polystyrene,polyethylene and polyurethane without prior comminution and densification.The biodegradation processes involving oxidation,cleavage and depolymerization of plastics were all demonstrated.Furthermore,foam plastic type-dependent functional microbes and enzymes that contributed to the efficient plastic degradationwere identified.Thiswork provides valuable insights into the practical applications of insects for sustainable plastics biodegradation.
文摘We identified the antimony species present in a wide variety of plastic samples by X ray absorption spectroscopy(XAS)at the Sb L_(3)-edge.The samples contained different concentrations of antimony(Sb),ranging from PET bottles in which Sb compounds are used as catalysts,with concentrations around 300 mg/kg,to electrical equipment in which the element is used as a flame retardant,with concentrations of several tens of thousands of mg/kg.Although the shape of the spectra at the L_(3)-edge is quite similar for all Sb reference materials,we were able to identify antimony glycolate or acetate in PET bottles,bound organic Sb in c-PET trays and senarmontite in electrical materials as themain Sb components.In samples with high Ca content(e.g.,electrical objects,some c-PET food trays and textiles)the Ca Ka emission line interferes with the Sb La line by introducing a high background which reduces the signal-to-noise ratio in the Sb XAS spectrum,resulting in noisy and distorted spectra.The element-resolved map on a PET bottle sample revealed both Sb and Ca hot spots of around 10-20 microns in size,with no correlation.
基金supported by the National Natural Science Foundation of China(Nos.22036001,42342057,and 22236006).
文摘Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater,together with the influence of their properties and effects of environmental factors on their transport.However,the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation.To provide systematic theoretical support for that,this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system,provides a comprehensive introduction of their sources and fate,and classifies the transport mechanisms into mechanical transport,physicochemical transport and biological processes assisted transport fromthe perspectives ofmechanical stress,physicochemical reactions,and bioturbation,respectively.Ultimately,this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater,themicroorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation.Overall,this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
基金supported by the National Natural Science Foundation of China(Nos.22125103 and 22301077)STCSM(22JC140100)Shanghai Pujiang Program(No.22PJ1403200)。
文摘Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals.However,studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored.In this review,we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics,especially for poly(phenylene sulfide)(PPS),poly(aryl ether)s including poly(ether ether ketone)(PEEK),polysulfone(PSU),polyphenylsulfone(PPSU)and polyethersulfone(PES).We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field.
基金financially supported by the National Natural Science Foundation of China(22205205)the Fundamental Research Funds of Zhejiang Sci-Tech University(ZSTU,25262157Y)the staff of beamline BL11B and BL13SSW at Shanghai Synchrotron Radiation Facility for experimental support。
文摘Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.
基金funded by the research project Env Agro(No.XG-IDI24-05/04)of Universidade de Vigo(Spain)and Universidade do Minho(Portugal)the financial support of the Consellería de Cultura,Educación e Universidade,Xunta de Galicia(Spain)through the contract(No.ED431C2021/46-GCR)granted to the research group BV1 of Universidade de Vigo+3 种基金a postdoctoral fellowship(No.ED481B-2022081)funded by Xunta de Galiciaa pre-doctoral Formación de Profesorado Universitario contract(No.FPU19/03758)funded by the Ministry of Universities(Spanish Government)supported by a JdCi research contract(No.IJC2020044197-I)funded by MICIU/AEI/10.13039/501100011033 and European Union EU/PRTREuropean Cooperation in Science and Technology(COST)Action CA20101 Plastics Monitoring Detection Remediation Recovery—PRIORITY,supported by COST(www.cost.eu)。
文摘Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and biological properties,including soil biota,are considered adverse for soils.Due to their small size and porous surface,microplastics can also be a new environmental concern because of their ability to act as carriers of contaminants or diseases.
基金financially supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021309)the Capacity-building Projects by the Beijing Academy of Agriculture and Forestry Sciences,China(No.KJCX20220414)the National Natural Science Foundation of China(No.42277303)。
文摘Dear Editor,Plastics have been ubiquitous in the environment due to their high amounts of production and application(Geyer et al.,2017).In 2021,annual global plastic production increased to 39.07 billion tons(Rede et al.,2023).Plastics undergo weathering,photolysis,and other environmental effects and form emerging contaminants with small particle sizes that can easily migrate,i.e.,microplastics(MPs,<5 mm)(Auta et al.,2017).
文摘The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based plastics,there has been a notable transition towards the creation of biodegradable alternatives sourced from natural materials.Biofibres and bioplastics,especially those derived from agricultural waste,have garnered significant attention for their prospective uses in food packaging,biomedical sciences,and sustainable manufacturing.This study examines the viability of employing banana peel as a natural and environmentally sustainable raw material for the production of biodegradable bioplastic sheets.Due to its abundant polysaccharides and lignocellulosic fibers,banana peel presents advantageous structural and mechanical characteristics for bioplastic manufacturing.Experimental findings demonstrate that bioplastic derived from banana peels has enhanced biodegradability and environmental compatibility relative to traditional synthetic plastics,positioning it as a feasible alternative to mitigate the worldwide plastic waste epidemic.An optimal formulation was constructed using Design Expert software,comprising 55.38 g of banana peel,27.63 g of fish scales,and 20 g of chitosan powder.This formulation improves the film’s tensile strength,flexibility,and degradation rate,ensuring its efficacy in industrial applications including food packaging and molding.The study’s results highlight the promise of bioplastics made from banana peels as an economical and sustainable alternative,decreasing dependence on petroleum-based plastics and alleviating environmental pollution.
基金Supported by the Natural Science Key Foundation of Fujian Province,China(No.2020J02002)the Hainan Province Science and Technology Special Fund(No.ZDYF2022SHFZ317)。
文摘Micro-and nano-plastics,defined as plastic particles measuring≤5 mm,represent a class of contaminants of emerging concern.These particles are ubiquitous in aquatic environments,posing significant threats to both freshwater and marine organisms.The accumulation of micro-and nanoplastics in aquatic biota can lead to physical harm and chemical hazards,as these particles can serve as vectors for transporting toxic substances.As the research community strives to understand the transport and fate of micro-and nano-plastics,as well as their ecotoxicological implications,the scope of research questions continues to broaden.In response to these developments,the Journal of Oceanology and Limnology has recently launched a special issue entitled“Micro-and nano-plastics:an emerging contaminant in marine and freshwater ecosystems.”
基金support from the National Natural Science Foundation of China(Grant No.22102140the Natural Science Foundation of Jiangsu Province(Grant No.BK20211602)+1 种基金the Qing Lan Project of Yangzhou Universitythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Yangzhou University,Grant No.SJCX23_1911).
文摘Electrocatalytic valorization of disused poly(ethylene terephthalate)(PET)plastics into value-added chemicals emerges as a potential approach to address plastic pollution and resources upgrading,but it faces challenges in the development of efficient catalysts for PET-derived ethylene glycol(EG)electrooxidation.Herein,we proposed pyramid arrays on sheet Fe-doped NiO/FeNi_(3)(SPA-NiFeO_(x)/FeNi_(3))heterostructure,which is derived from the pyrolysis of MOF-on-MOF heterostructure growth triggered by graphene quantum dots(GQDs).Such SPA-NiFeO_(x)/FeNi_(3)exhibits superior catalytic performance on the electrooxidation of EG(EGOR)from PET hydrolysate,with a formic acid(FA)selectivity of 91.5%and a Faradaic efficiency of 92%.The ligand effect of GQDs in both the catalyst design and improved electrocatalytic performance was studied with combined spectroscopy analysis and theoretical calculations,which revealed that such spatially separated NiFeO_(x)and FeNi_(3)components by GQDs possess more active sites to anticipate in electrocatalytic EGOR,and the large sp2 domains in GQDs possess a strong electron-withdrawing ability to reduce the electron density of bonded Ni and Fe,resulting in high-valenced Ni^(δ+)/Fe^(δ+)in FeNi_(3)and Ni(2+δ)in NiO,respectively.Furthermore,the coordination number of Ni and Fe centers was lowered due to the steric effect of GQDs.Therefore,the adsorption of EG on Ni^(δ+)for cascade dehydrogenation and C–C bond cleavage led to adsorbed FA that transferred to adjacent Fe for desorption,which was promoted by the enrichment of OH−on nearby Ni^((2+δ))sites,along with optimized Gibbs free energy change in the multistep reaction pathway.This work provides an efficient multi-active-site catalyst for disused PET plastics valorization,thereby presenting a new approach to enhance the efficiency of PET plastics valorization reactions.
基金Supported by the Guangdong Special Support Program for Key Talents Team Program(No.2019BT02H594)the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2021GD0810)the Major Project of National Social Science Foundation of China(No.21ZDA097)。
文摘A massive amount of plastic waste has presented an immense management challenge.This escalating ecological damage,coupled with the detrimental effects of plastics infiltrating the marine food web,poses a significant threat to human livelihoods.To combat this,there is a call for the development of plastic detection algorithms using remote sensing data.Here we tested a new index,referred to index_(MP),to detect clusters of floating macro plastics in the ocean using satellite imagery.The index_(MP)was applied to convolution high-pass filtered(3×3)Sentinel 2 Level 1 C images,showing the potential to reduce atmospheric interference and enhance the object edges,thereby improving the clarity of detection.In the analysis,we used three scatter plots to identify and assess plastic pixels.To differentiate the common features of plastic from non-plastic objects,the Sentinel 2 bands 5,8,and 9 were plotted against index_(MP)calculated and convolution high-pass filtered Level 1 C(CHPIC)images.The plastic pixels,clustering in the three scatter plots,showed positive‘X’,i.e.,CHPIC image value and‘Y’,i.e.,each band 5,8,and 9 reflectance values,along with a CHPIC image value exceeding 0.05.Using the index_(MP)and scatter plot analysis,we identified plastic pixels containing 14%or more plastic bottles.Detection of other types of plastics,such as fishing nets and plastic bags,required pixel proportions greater than 50%.Hence,plastic bottles were notably responsive even at a low pixel fraction.We further explored the classification of plastic and non-plastic objects by analyzing reed(plant)pixels;the differentiation between plastic and reed was conducted in the band 5 and 9 scatter plots.
基金supported by the National Natural Science Foundation of China(Grant No.22276123,22025505)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD105)State Key Lab of Metal Matrix Composite。
文摘The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substantial challenges.In this study,we developed nitrogen-doped(N-doped)carbon materials through scalable carbonization of MF resin plastic waste.This metal-free N-doped carbon catalyst achieved a hydrogen peroxide(H_(2)O_(2))production rate of 971.6 mmol gcatalyst^(-1)h^(-1)with a Faradaic efficiency for H_(2)O_(2)(FEH_(2)O_(2))exceeding 90%under acidic conditions.Additionally,a flow cell utilizing this carbon catalyst demonstrated a production rate of 11.3 mol cm^(-2)h^(-1)(22.5 mol g_(catalyst)^(-1)h^(-1))and maintained a record-high current density of approximately 530 mA cm^(-2)over 300 h.In-situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations revealed the presence of porphyrin-like carbon defects,which serve as active sites for the continuous and stable generation of^(*)OOH species.The nitrogen-doped carbon materials obtained from large-scale carbonization of MF plastic waste exhibit abundant active sites,making them highly promising electrocatalysts for the two-electron oxygen reduction reaction(2e^(-)ORR).
基金supported by the support by the Natural Science Foundation of China projects(Nos.22225604 and 22076082)the Frontiers Science Center for New Organic Matter(No.63181206)Haihe Laboratory of Sustainable Chemical Transformations.
文摘With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.