Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinso...Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease,this plasticity is disrupted,leading to cognitive and motor deficits.This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease.Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function,while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control.Enhancing neuronal plasticity offers therapeutic potential for these diseases.A systematic literature review was conducted using databases such as PubMed,Scopus,and Google Scholar,focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease.Data synthesis identified key themes such as synaptic mechanisms,neurogenesis,and therapeutic strategies,linking molecular insights to clinical applications.Results highlight that targeting synaptic plasticity mechanisms,such as long-term potentiation and long-term depression,shows promise.Neurotrophic factors,advanced imaging techniques,and molecular tools(e.g.,clustered regularly interspaced short palindromic repeats and optogenetics)are crucial in understanding and enhancing plasticity.Current therapies,including dopamine replacement,deep brain stimulation,and lifestyle interventions,demonstrate the potential to alleviate symptoms and improve outcomes.In conclusion,enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases.Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease.展开更多
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over...Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.H...The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders.展开更多
In this paper,the author follows the trail of C.Malabou,Q.Meillassoux,and G.Deleuze and tries to test three philosophical concepts that seem to be particularly threatened in the era of automatic digital reproduction.T...In this paper,the author follows the trail of C.Malabou,Q.Meillassoux,and G.Deleuze and tries to test three philosophical concepts that seem to be particularly threatened in the era of automatic digital reproduction.These three concepts are plasticity(defended for many years by C.Malabou),contingency(reconstructed by Q.Meillassoux),and virtuality(developed by G.Deleuze).The main task of the text will be to reflect on which of these three concepts better protects our thinking against automation and stays faithful to the ideal of creativity.In what sense are plasticity,contingency,and the possibility of virtualization the a priori condition of any transformation,physical or intellectual,affective or conceptual metamorphosis?In what sense are these three concepts the only conditions for the survival of every living being?Would a being without contingency,plasticity,and disposition to virtualization simply be a dead being?展开更多
Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative...Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative vertebrates including urodele amphibians and teleost fish spontaneously reverse CNS damage.Teletost zebrafish(danio rerio)are tropical freshwater fish that proved to be an excellent vertebrate model of successful CNS regeneration.Differential neuronal,glial,and immune injury responses underlie disparate injury outcomes between highly regenerative zebrafish and poorly regenerative mammals.This article describes complications associated with neuronal repair following spinal cord injury(SCI)in poorly regenerative mammals and highlights intersecting modes of plasticity and regeneration in highly regenerative zebrafish(Figures 1 and 2).Comparative approaches evaluating immunoglial SCI responses were recently reviewed elsewhere(Reyes and Mokalled,2024).展开更多
Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting th...Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting the nerve roots has been shown to improve motor function by enhancing nerve conduction in the injured spinal cord and restoring the synaptic ultrastructure of both the sensory and motor cortex.However,our understanding of the neurophysiological mechanisms by which nerve root magnetic stimulation facilitates motor function recovery in the spinal cord is limited,and its role in neuroplasticity remains unclear.In this study,we established a model of spinal cord injury in adult male Sprague–Dawley rats by applying moderate compression at the T10 vertebra.We then performed magnetic stimulation on the L5 nerve root for 3 weeks,beginning on day 3 post-injury.At day 22 post-injury,we observed that nerve root magnetic stimulation downregulated the level of interleukin-6 in the injured spinal cord tissue of rats.Additionally,this treatment reduced neuronal damage and glial scar formation,and increased the number of neurons in the injured spinal cord.Furthermore,nerve root magnetic stimulation decreased the levels of acetylcholine,norepinephrine,and dopamine,and increased the expression of synaptic plasticity-related m RNA and proteins PSD95,GAP43,and Synapsin II.Taken together,these results showed that nerve root magnetic stimulation alleviated neuronal damage in the injured spinal cord,regulated synaptic plasticity,and suppressed inflammatory responses.These findings provide laboratory evidence for the clinical application of nerve root magnetic stimulation in the treatment of spinal cord injury.展开更多
The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitr...The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.An experiment was conducted from 2020-2022 with a high nitrogen use efficiency(high-NUE)cultivar(T-43)and a low-NUE cultivar(LX-3),and four nitrogen levels(0,150,300,and 450 kg ha^(-1))under drip irrigation in large fields.The aim was to study the relationships between root morphology,conformation,biomass,and endogenous hormone contents,yield and NUE.The results showed three main points:1)Under the same N application rate,compared with LX-3,the yield,N partial factor productivity(PFP),fine root length density(FRLD),shoot dry weight(SDW),root indole-3-acetic acid(IAA),and root zeatin and zeatin riboside(Z+ZR)of T-43 were significantly greater by11.4-18.9,11.3-13.5,11.6-15.7,9.9-31.1,6.1-48.1,and 22.8-73.6%,respectively,while the root-shoot ratio(RSR)and root abscisic acid(ABA)were significantly lower(P<0.05);2)nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents(P<0.05).Compared to N0,the yield,RLD,surface area density(SAD),root volume density(RVD),and root endogenous hormones(IAA,Z+ZR)were significantly increased in both cultivars under N2 by 61.6-71.6,64.2-74.0,69.9-105.6,6.67-9.91,54.0-67.8,and 51.4-58.9%,respectively.Compared with N3,the PFP and N agronomic efficiency(NAE)of nitrogen fertilizer under N2 increased by 52.3-62.4 and39.2-63.0%,respectively;3)the responses of root trait plasticity to the N environment significantly differed between the cultivars(P<0.05).Compared with LX-3,T-43 showed a longer root length and larger specific surface area,which is a strategy for adapting to changes in the nutrient environment.For the rice cultivar with high-NUE,the RSR was optimized by increasing the FRLD,root distribution in upper soil layers,and root endogenous hormones(IAA,Z+ZR)under suitable nitrogen conditions(N2).An efficient nutrient acquisition strategy can occur through root plasticity,leading to greater yield and NUE.展开更多
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environment...Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.展开更多
Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social ...Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social partner is a crucial factor that shapes social decision-making,as oppositesex interactions are vital for fulfilling reproductive needs,whereas same-sex interactions are essential for both collaborative support and competitive behaviors.Under normal circumstances,mice typically exhibit a variety of prosocial behaviors that strengthen social bonds within their groups.展开更多
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were...The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.展开更多
OBJECTIVE:To investigate the effects of acupuncture combined with upper limb rehabilitation robot on neural remodeling and functional recovery in post-stroke patients.METHODS:There were 50 stroke patients were randoml...OBJECTIVE:To investigate the effects of acupuncture combined with upper limb rehabilitation robot on neural remodeling and functional recovery in post-stroke patients.METHODS:There were 50 stroke patients were randomly divided into an experimental group(acupuncture combined with upper limb rehabilitation robot assisted training)and a control group(upper limb rehabilitation robot assisted training).Various assessments were conducted to compare the effects of the two treatments on neural remodeling and functional recovery.Functional near-infrared spectroscopy technology was used to assess the effects of different treatments on neural plasticity and their impact on upper limb function and activities of daily living.RESULTS:The experimental group showed significantly higher concentrations of oxygenated hemoglobin and total hemoglobin in specific brain regions compared to the control group(P<0.05).Additionally,the experimental group had significantly lower concentrations of deoxygenated hemoglobin(P<0.05).After treatment,both groups showed improvements in various measures,but the experimental group had significantly greater improvements(P<0.05).CONCLUSION:Acupuncture combined with upper limb rehabilitation robot can effectively improve upper limb function and neural remodeling in stroke patients.This study supports the integration of Traditional Chinese and Western Medicine in improving limb dysfunction poststroke.展开更多
The nanoindentation pop-in behaviors of 13 grains with diverse crystallographic orientations were analysed using a coarse-grained Mg-2 wt.% Gd alloy.Within nanoscale stressed volumes within all grains,the converted sh...The nanoindentation pop-in behaviors of 13 grains with diverse crystallographic orientations were analysed using a coarse-grained Mg-2 wt.% Gd alloy.Within nanoscale stressed volumes within all grains,the converted shear stresses for the first pop-in,calculated using the indentation Schmid factor,ranged from 1 to 1.3 GPa,consistent with theoretical predictions for dislocation nucleation in Mg.The estimated activation volume of the first pop-in was approximately 27–40 A3(involving about ~2 atoms),aligning with reported atomistic simulations of the surface dislocation semi-loop nucleation.While indented near the -axis,grains exhibit higher first pop-in loads and successive pop-ins,implying the possibility of a cross-slip nucleation mechanism to accommodate -axis deformation.展开更多
The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure wa...The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure was composed of FCC solid solution,Cr_(23)C_(6) carbide phases,and Mn_(2)SiO_(4) oxy-silicon phase.The relative density,hardness,tensile strength,and elongation of SiC@HEA composites with 1.0 wt.%SiC were 98.5%,HV 358.0,712.3 MPa,and 36.2%,respectively.The core−shell structure had a significant deflecting effect on the cracks.This effect allowed the composites to effectively maintain the excellent plasticity of the matrix.As a result,the core−shell SiC@HEA composites obtained superior strength and plasticity with multiple mechanisms.展开更多
Extracellular vesicles(EVs)are cell-derived,lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules(including proteins,RNAs,and bioactive lipids)which play important roles in interc...Extracellular vesicles(EVs)are cell-derived,lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules(including proteins,RNAs,and bioactive lipids)which play important roles in intercellular communication.EVs crucially control neuronal energy metabolism under physiological conditions,constrain oxidative stress a nd brain inflammatory responses,and promote neuronal survival and plasticity upon brain damage.展开更多
The mechanical anisotropy on extruded AZ31 magnesium alloy bar has been investigated by combining experimental measurement and crystal plasticity modeling.Monotonic tension and compression are conducted in four loadin...The mechanical anisotropy on extruded AZ31 magnesium alloy bar has been investigated by combining experimental measurement and crystal plasticity modeling.Monotonic tension and compression are conducted in four loading directions with the oblique angleϕof 0°,30°,60°and 90°from extrusion radial direction to extrusion direction,and are also simulated by visco-plastic self-consistent model with considering twinning and detwinning scheme at the first time.The simulation results are well in agreement with the corresponding experimental data.Combined with the Schmid factor(SF),the anisotropic mechanical behaviors including yield strength,ultimate strength and strain hardening rate are interpreted with the predicted relative activities of deformation modes,texture evolution and twin volume fraction.With the loading angle varying from 0°to 90°,it is found that prismatic slip becomes the primary deformation mode with the decreasing relative activities of basal slip and extension twinning in tension.While the deformation mechanism is more complex in compression:Extension twinning gets great activation at the beginning of the deformation,especially under compression along 90°;basal slip and pyramidal<c+a>slip dominate the late deformation of compression along 0°and 30°,while basal slip and prismatic slip are dominated modes in compression along 60°and 90°.Additionally,different {10 1 2}twinning behaviors with two or three and one or two pairs of twin variants being activated in tension along 30°and compression along 90°,respectively,have a close correlation with the texture evolution to coordinate plastic deformation.The activation of{10 1 2}twinning,which varies with the loading angleϕ,results in the increased trend of strain hardening rate.Following the exhausting of twinning,non-basal slips with the highest SF become the primary deformation mode subsequently,contributing to the decreasing trend in hardening behavior and the anisotropy of ultimate strength.展开更多
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ...The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.展开更多
基金financially supported by King Abdulaziz University,Deanship of Scientific Research(DSR)。
文摘Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease,this plasticity is disrupted,leading to cognitive and motor deficits.This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease.Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function,while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control.Enhancing neuronal plasticity offers therapeutic potential for these diseases.A systematic literature review was conducted using databases such as PubMed,Scopus,and Google Scholar,focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease.Data synthesis identified key themes such as synaptic mechanisms,neurogenesis,and therapeutic strategies,linking molecular insights to clinical applications.Results highlight that targeting synaptic plasticity mechanisms,such as long-term potentiation and long-term depression,shows promise.Neurotrophic factors,advanced imaging techniques,and molecular tools(e.g.,clustered regularly interspaced short palindromic repeats and optogenetics)are crucial in understanding and enhancing plasticity.Current therapies,including dopamine replacement,deep brain stimulation,and lifestyle interventions,demonstrate the potential to alleviate symptoms and improve outcomes.In conclusion,enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases.Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease.
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174)to LB,Fondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618)to LB。
文摘Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174),to LBFondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618),to LBPRIN2022(grant 2022LB4X3N),to LB。
文摘The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders.
文摘In this paper,the author follows the trail of C.Malabou,Q.Meillassoux,and G.Deleuze and tries to test three philosophical concepts that seem to be particularly threatened in the era of automatic digital reproduction.These three concepts are plasticity(defended for many years by C.Malabou),contingency(reconstructed by Q.Meillassoux),and virtuality(developed by G.Deleuze).The main task of the text will be to reflect on which of these three concepts better protects our thinking against automation and stays faithful to the ideal of creativity.In what sense are plasticity,contingency,and the possibility of virtualization the a priori condition of any transformation,physical or intellectual,affective or conceptual metamorphosis?In what sense are these three concepts the only conditions for the survival of every living being?Would a being without contingency,plasticity,and disposition to virtualization simply be a dead being?
文摘Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative vertebrates including urodele amphibians and teleost fish spontaneously reverse CNS damage.Teletost zebrafish(danio rerio)are tropical freshwater fish that proved to be an excellent vertebrate model of successful CNS regeneration.Differential neuronal,glial,and immune injury responses underlie disparate injury outcomes between highly regenerative zebrafish and poorly regenerative mammals.This article describes complications associated with neuronal repair following spinal cord injury(SCI)in poorly regenerative mammals and highlights intersecting modes of plasticity and regeneration in highly regenerative zebrafish(Figures 1 and 2).Comparative approaches evaluating immunoglial SCI responses were recently reviewed elsewhere(Reyes and Mokalled,2024).
基金supported by the National Natural Science Foundation of China,Nos.81772453(to DX),81974358(to DX),81973157(to JZ),82173646(to JZ),82302866(to YZ)。
文摘Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting the nerve roots has been shown to improve motor function by enhancing nerve conduction in the injured spinal cord and restoring the synaptic ultrastructure of both the sensory and motor cortex.However,our understanding of the neurophysiological mechanisms by which nerve root magnetic stimulation facilitates motor function recovery in the spinal cord is limited,and its role in neuroplasticity remains unclear.In this study,we established a model of spinal cord injury in adult male Sprague–Dawley rats by applying moderate compression at the T10 vertebra.We then performed magnetic stimulation on the L5 nerve root for 3 weeks,beginning on day 3 post-injury.At day 22 post-injury,we observed that nerve root magnetic stimulation downregulated the level of interleukin-6 in the injured spinal cord tissue of rats.Additionally,this treatment reduced neuronal damage and glial scar formation,and increased the number of neurons in the injured spinal cord.Furthermore,nerve root magnetic stimulation decreased the levels of acetylcholine,norepinephrine,and dopamine,and increased the expression of synaptic plasticity-related m RNA and proteins PSD95,GAP43,and Synapsin II.Taken together,these results showed that nerve root magnetic stimulation alleviated neuronal damage in the injured spinal cord,regulated synaptic plasticity,and suppressed inflammatory responses.These findings provide laboratory evidence for the clinical application of nerve root magnetic stimulation in the treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China(31860345 and 31460541)the Youth Innovative Top Talents Project of Shihezi University,China(CXBJ202003)the Third Division of Xinjiang Production and Construction Corps Scientific and Technological Achievements Transfer and Transformation Project,China(KJ2023CG03)。
文摘The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.An experiment was conducted from 2020-2022 with a high nitrogen use efficiency(high-NUE)cultivar(T-43)and a low-NUE cultivar(LX-3),and four nitrogen levels(0,150,300,and 450 kg ha^(-1))under drip irrigation in large fields.The aim was to study the relationships between root morphology,conformation,biomass,and endogenous hormone contents,yield and NUE.The results showed three main points:1)Under the same N application rate,compared with LX-3,the yield,N partial factor productivity(PFP),fine root length density(FRLD),shoot dry weight(SDW),root indole-3-acetic acid(IAA),and root zeatin and zeatin riboside(Z+ZR)of T-43 were significantly greater by11.4-18.9,11.3-13.5,11.6-15.7,9.9-31.1,6.1-48.1,and 22.8-73.6%,respectively,while the root-shoot ratio(RSR)and root abscisic acid(ABA)were significantly lower(P<0.05);2)nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents(P<0.05).Compared to N0,the yield,RLD,surface area density(SAD),root volume density(RVD),and root endogenous hormones(IAA,Z+ZR)were significantly increased in both cultivars under N2 by 61.6-71.6,64.2-74.0,69.9-105.6,6.67-9.91,54.0-67.8,and 51.4-58.9%,respectively.Compared with N3,the PFP and N agronomic efficiency(NAE)of nitrogen fertilizer under N2 increased by 52.3-62.4 and39.2-63.0%,respectively;3)the responses of root trait plasticity to the N environment significantly differed between the cultivars(P<0.05).Compared with LX-3,T-43 showed a longer root length and larger specific surface area,which is a strategy for adapting to changes in the nutrient environment.For the rice cultivar with high-NUE,the RSR was optimized by increasing the FRLD,root distribution in upper soil layers,and root endogenous hormones(IAA,Z+ZR)under suitable nitrogen conditions(N2).An efficient nutrient acquisition strategy can occur through root plasticity,leading to greater yield and NUE.
基金supported by the National Natural Science Foundation of China (31861143023,31872252)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201)。
文摘Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
基金supported by grants from the National Natural Science Foundation of China(32471074 and 32200825)the STI2030-Major Projects(2021ZD0203000 and 2021ZD0203002)+1 种基金the Shandong Provincial Taishan Scholars Project(tsqn202306174)the Shandong Provincial Natural Science Foundation(ZR2022QC173).
文摘Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social partner is a crucial factor that shapes social decision-making,as oppositesex interactions are vital for fulfilling reproductive needs,whereas same-sex interactions are essential for both collaborative support and competitive behaviors.Under normal circumstances,mice typically exhibit a variety of prosocial behaviors that strengthen social bonds within their groups.
基金supported by the National Research Foundation grant funded by the Korean government(No,2023R1A2C2007190,RS-2024-00398068)partially funded by the Natural Science Foundation of Shandong Province,China(No.ZR2022QE206).
文摘The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.
基金Supported by Zhejiang Province Traditional Chinese Medicine Science and Technology Project(2024ZL769):Effect of Xingshen Kaiqiao Acupuncture Method combined with Upper Limb Robot-assisted Training on Upper Limb Function and Neuroplasticity Mechanism of Hemiplegia after Stroke based on Functional Near-Infrared Spectroscopy Technology。
文摘OBJECTIVE:To investigate the effects of acupuncture combined with upper limb rehabilitation robot on neural remodeling and functional recovery in post-stroke patients.METHODS:There were 50 stroke patients were randomly divided into an experimental group(acupuncture combined with upper limb rehabilitation robot assisted training)and a control group(upper limb rehabilitation robot assisted training).Various assessments were conducted to compare the effects of the two treatments on neural remodeling and functional recovery.Functional near-infrared spectroscopy technology was used to assess the effects of different treatments on neural plasticity and their impact on upper limb function and activities of daily living.RESULTS:The experimental group showed significantly higher concentrations of oxygenated hemoglobin and total hemoglobin in specific brain regions compared to the control group(P<0.05).Additionally,the experimental group had significantly lower concentrations of deoxygenated hemoglobin(P<0.05).After treatment,both groups showed improvements in various measures,but the experimental group had significantly greater improvements(P<0.05).CONCLUSION:Acupuncture combined with upper limb rehabilitation robot can effectively improve upper limb function and neural remodeling in stroke patients.This study supports the integration of Traditional Chinese and Western Medicine in improving limb dysfunction poststroke.
基金financial support of NSERC Discovery Grant (RGPIN-2019–05882) and Canada Research Chair program (CRC-2021–00512)。
文摘The nanoindentation pop-in behaviors of 13 grains with diverse crystallographic orientations were analysed using a coarse-grained Mg-2 wt.% Gd alloy.Within nanoscale stressed volumes within all grains,the converted shear stresses for the first pop-in,calculated using the indentation Schmid factor,ranged from 1 to 1.3 GPa,consistent with theoretical predictions for dislocation nucleation in Mg.The estimated activation volume of the first pop-in was approximately 27–40 A3(involving about ~2 atoms),aligning with reported atomistic simulations of the surface dislocation semi-loop nucleation.While indented near the -axis,grains exhibit higher first pop-in loads and successive pop-ins,implying the possibility of a cross-slip nucleation mechanism to accommodate -axis deformation.
基金supported by Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-21-10)China Postdoctoral Science Foundation(No.2018T110993)。
文摘The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure was composed of FCC solid solution,Cr_(23)C_(6) carbide phases,and Mn_(2)SiO_(4) oxy-silicon phase.The relative density,hardness,tensile strength,and elongation of SiC@HEA composites with 1.0 wt.%SiC were 98.5%,HV 358.0,712.3 MPa,and 36.2%,respectively.The core−shell structure had a significant deflecting effect on the cracks.This effect allowed the composites to effectively maintain the excellent plasticity of the matrix.As a result,the core−shell SiC@HEA composites obtained superior strength and plasticity with multiple mechanisms.
基金supported by the German Research Foundation(grants 514990328,389030878,405358801/428817542(within FOR2879)and 449437943(within TRR332,project C06)German Federal Ministry of Education and Science(3DOS,grant 161L0278B)(to DMH)。
文摘Extracellular vesicles(EVs)are cell-derived,lipid membrane-enclosed vesicles carrying a broad spectrum of biologically active molecules(including proteins,RNAs,and bioactive lipids)which play important roles in intercellular communication.EVs crucially control neuronal energy metabolism under physiological conditions,constrain oxidative stress a nd brain inflammatory responses,and promote neuronal survival and plasticity upon brain damage.
基金supported by the National Natural Science Foundation of China(Nos.52271123,52101154)the Basic Research Program of Jiangsu(No.BK20231496)+2 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.23KJA130001)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLJCRCZL048)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX24_2700).
文摘The mechanical anisotropy on extruded AZ31 magnesium alloy bar has been investigated by combining experimental measurement and crystal plasticity modeling.Monotonic tension and compression are conducted in four loading directions with the oblique angleϕof 0°,30°,60°and 90°from extrusion radial direction to extrusion direction,and are also simulated by visco-plastic self-consistent model with considering twinning and detwinning scheme at the first time.The simulation results are well in agreement with the corresponding experimental data.Combined with the Schmid factor(SF),the anisotropic mechanical behaviors including yield strength,ultimate strength and strain hardening rate are interpreted with the predicted relative activities of deformation modes,texture evolution and twin volume fraction.With the loading angle varying from 0°to 90°,it is found that prismatic slip becomes the primary deformation mode with the decreasing relative activities of basal slip and extension twinning in tension.While the deformation mechanism is more complex in compression:Extension twinning gets great activation at the beginning of the deformation,especially under compression along 90°;basal slip and pyramidal<c+a>slip dominate the late deformation of compression along 0°and 30°,while basal slip and prismatic slip are dominated modes in compression along 60°and 90°.Additionally,different {10 1 2}twinning behaviors with two or three and one or two pairs of twin variants being activated in tension along 30°and compression along 90°,respectively,have a close correlation with the texture evolution to coordinate plastic deformation.The activation of{10 1 2}twinning,which varies with the loading angleϕ,results in the increased trend of strain hardening rate.Following the exhausting of twinning,non-basal slips with the highest SF become the primary deformation mode subsequently,contributing to the decreasing trend in hardening behavior and the anisotropy of ultimate strength.
基金supported by the Deutsche Forschungsgemeinschaft(DFG),TRR274(Project ID 408885537,Sy Nergy,EXC 2145/ID 390857198,to FMB)。
文摘The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.