Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate th...Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate the effect of high-refractive-index dielectric substrates on the chiroptical response of individual chiral plasmonic nanoparticles. Using Au helicoid as an example, we observe that as the refractive index of the supporting substrate increases, there is a remarkable enhancement in the dissymmetry factor(g-factor), along with an abnormal peak separation between the absorption and scattering g-factor spectra, which is different from typical observations. This unique chiroptical evolution is attributed to the strong plasmon hybridization under circularly polarized in-plane excitation. To validate the universality of these findings, we vary the size and material of the helicoid, confirming the consistent occurrence of this phenomenon. Our findings provide valuable insights into the substrate effect of chiral plasmonic nanoparticles to facilitate their applications in on-chip devices and sensing technologies.展开更多
Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.Th...Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties.Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored.We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices.In addition,we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping,not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications.Finally,potential research directions within this field are discussed.展开更多
Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic v...Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.展开更多
Structural engineering enhances plasmonic stability and amplifies localized electric fields,yet the limited intrinsic activity of plasmonic materials necessitates integrating catalytic active sites.Herein,we design a ...Structural engineering enhances plasmonic stability and amplifies localized electric fields,yet the limited intrinsic activity of plasmonic materials necessitates integrating catalytic active sites.Herein,we design a yolk@shell nanoreactor featuring dual-plasmonic Au@CuS core-shell structures encapsulated by sulfur vacancy-rich ZnIn2S4(Sv-ZIS).The electromagnetic“hotspots”from Au and CuS near-field coupling concentrate incident light to boost hot-carrier generation and migration while sulfur vacancies in Sv-ZIS promote hydrogen evolution.This dual mechanism synergistically achieves 86.3 mmol g^(-1)h-1of H2production(65.6%quantum efficiency at 420 nm),maintaining 48.3 mmol g^(-1)h-1at 6℃.Density functional theory(DFT)simulations demonstrate that sulfur vacancies not only reduce the H*adsorption energy barrier from 0.87 to 0.11 eV but also amplify the interfacial electric field strength by 9%.Vacancy-redirected fields favor proton reduction pathways,accelerating charge transfer kinetics.Comparative studies confirm the universal superiority of dual-plasmonic architecture,while Sv-ZIS shells exhibit optimized activity through defect-mediated electronic interactions.This work provides a blueprint for bridging plasmonic field enhancement and defect engineering in multi-component photocatalysts.展开更多
Plasmonic colors are attracting attention for their subwavelength small size,vibrant hues,and environmental sustainability beyond traditional pigments while suffering from angular and/or polarization dependency due to...Plasmonic colors are attracting attention for their subwavelength small size,vibrant hues,and environmental sustainability beyond traditional pigments while suffering from angular and/or polarization dependency due to distinct excitations of lattice resonances and/or surface plasmon polaritons(SPPs).Here,we demonstrate the sodium metasurface-based plasmonic color palettes with polarization-independent wide-view angle(approximately>〓〓60 deg in experiment and up to〓〓90 deg in theory)and single-particlelevel pixel size(down to∼60 nm)that integrate both pigment-like and structure coloring advantages,fabricated by the templated nanorod-pixelated solidification of wetted liquid metals.Such intriguing performances are mainly attributed to the particle plasmon dominant spectral response by steering the filling profile and thus the interplay between localized surface plasmons and SPPs.Combining low material cost,potentially scalable manufacturing process,and pronounced optical performance,the proposed sodium-based metasurfaces will provide a promising route for advanced color information technology.展开更多
Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distin...Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distinguished by their high output complexity and expansive response space,offer a promising alternative to conventional electronic counterparts.For practical authentications,the expansion of optical PUF keys usually involves intricate spatial or spectral shaping of excitation light using bulky external apparatus,which largely hinders the applications of optical PUFs.Here,we report a plasmonic PUF system based on heterogeneous nanostructures.The template-assisted shadow deposition technique was employed to adjust the morphological diversity of densely packed metal nanoparticles in individual PUFs.Transmission images were processed via a hash algorithm,and the generated PUF keys with a scalable capacity from 2875 to 243401 exhibit excellent uniqueness,randomness,and reproducibility.Furthermore,the wavelength and the polarization state of the excitation light are harnessed as two distinct expanding strategies,offering the potential for multiscenario applications via a single PUF.Overall,our reported plasmonic PUFs operated with the multidimensional expanding strategy are envisaged to serve as easy-to-integrate,easy-to-use systems and promise efficacy across a broad spectrum of applications,from anticounterfeiting to data encryption and authentication.展开更多
There is limited amount of research on surface plasmon resonance(SPR)sensors with self-referencing capabilities which are based on dielectric gratings.In the short-wavelength range,a metal grating sensor is capable of...There is limited amount of research on surface plasmon resonance(SPR)sensors with self-referencing capabilities which are based on dielectric gratings.In the short-wavelength range,a metal grating sensor is capable of simultaneously measuring liquid refractive index under proposed temperature.A fabricated gold grating is placed on one side of a thin gold film for refractive index measurement,while the other with polydimethylsiloxane(PDMS)is deposited on the other side for temperature measurement.We use finite element analysis to research its sensing characteristics.Due to the high refractive index sensitivity of SPR sensors and thermo-optic coefficient of PDMS,we discovered the maximum spectral sensitivity of the sensor is 564 nm/RIU and-50 pm/℃when the liquid refractive index ranges from 1.30 to 1.40 with temperature ranging from 0℃ to 100℃.Numerical results indicate that there may not be mutual interference between two channels for measuring refractive index and temperature,which reduces the complexity of sensor measurements.展开更多
The construction of a well-defined and efficient Z-scheme heterostructure with enhanced photogenerated charge carriers and their rapid transfer is vital for realizing efficient photocatalytic hydrogen production,to ac...The construction of a well-defined and efficient Z-scheme heterostructure with enhanced photogenerated charge carriers and their rapid transfer is vital for realizing efficient photocatalytic hydrogen production,to achieve carbon neutrality.Herein,we study the H_(2)evolution reaction by rationally constructing a hybrid Au-anchored UiO-66-NH_(2)with localized surface plasmon resonance(LSPR)properties,embedded with ZnIn_(2)S_(4)/MoS_(2)nanosheets.Interestingly,the synergistic effect of excellent heterojunction,tunes additional catalytic active sites,provides effective separation of photogenerated charges at the junction interface and establishes a dedicated microenvironment for the boosted electron transfer.Notably,the optimized hybrid photocatalyst(Au6@U6N)15/ZIS/MS5 exhibits highly efficient H_(2)generation of 58.2 mmol g^(-1)h^(-1),which is almost 16 and 1.5 folds of the pristine ZIS and MS/U6N/ZIS,correspondingly.It has an apparent quantum efficiency of 19.6%at a wavelength of 420 nm,surpassing several reported MOF-based ZnIn_(2)S_(4)photocatalytic H_(2)evolution activities.Significantly,this research provides insights into the design of interface-engineered plasmonic MOF with layered encapsulated heterostructures that elucidate the role of plasmonic LSPR effect and efficiently regulate the charge transfer with enhanced microchannels,hence boosting the visible-light-driven photocatalytic activity for realizing efficient green energy conversion.展开更多
A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication chan...A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems.展开更多
Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves....Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.展开更多
Tamm plasmon polaritons(TPPs)are localized photonic states at the interface between a metal layer and one-dimensional(1D)photonic crystal substrate.Unlike surface plasmon polaritons(SPPs),TPPs can be excited by both t...Tamm plasmon polaritons(TPPs)are localized photonic states at the interface between a metal layer and one-dimensional(1D)photonic crystal substrate.Unlike surface plasmon polaritons(SPPs),TPPs can be excited by both transverse magnetic and electric waves without requiring additional coupling optics.TPPs offer robust color filtering,making them ideal for applications such as complementary metal oxide semiconductor(CMOS)image detectors.However,obtaining a large-area,reversible,and reconfigurable filter remains challenging.This study demonstrates a dynamically reconfigurable reflective color filter by integrating an ultrathin antimony trisulfide(Sb_(2)S_(3))layer with Tamm plasmonic photonic crystals.Reconfigurable tuning was achieved by inducing Sb_(2)S_(3) crystallization and reamorphization via thermal and optical activation,respectively.The material exhibited good stability after multiple switching cycles.The reflectance spectrum can be tuned across the visible range,with a shift of approximately 50 nm by switching Sb_(2)S_(3) between its amorphous and crystalline phases.This phase transition is nonvolatile and substantially minimizes the energy consumption,enhancing efficiency for practical applications.Tamm plasmonic photonic crystals are low-cost and large-scale production,offering a platform for compact color display systems and customizable photonic crystal filters for realistic system integration.展开更多
Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we inve...Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons(SPPs) of the graphene and localized surface phonon polaritons(LSPh P) of nanospheres. We exam nanospheres consisted of several different materials, including SiO_(2), Si C, Zn Se, Na Cl, ln Sb. Our results suggest that the LSPh P of Na Cl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for Na Cl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica(SiO_(2)) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for Na Cl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.展开更多
The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielect...The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielectric materials can concentrate and manipulate light at the nanoscale,they cannot provide sufficient photothermal efficiency in a direct absorption solar collector.Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance.This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak,leading to a substantial enhancement of photothermal conversion efficiency.The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles,achieving a 38%increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path.The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field,causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution.Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size.Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization.展开更多
Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/...Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.展开更多
Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.H...Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.Herein,an S-scheme Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst was developed via a simple in situ chemical deposition procedure,and further photoreduction operation made metallic Ag(size:3.5–12.5 nm)being in situ formed on Ag_(2)CO_(3)/C_(3)N_(5) for a plasmonic S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst.Consequently,Ag/Ag_(2)CO_(3)/C_(3)N_(5) manifests pronouncedly upgraded photocatalytic performance toward oxytetracycline degradation with a superior photoreaction rate constant of 0.0475 min‒1,which is 13.2,3.9 and 2.2 folds that of C_(3)N_(5),Ag_(2)CO_(3),and Ag_(2)CO_(3)/C_(3)N_(5),respectively.As evidenced by comprehensive characterizations and density functional theory calculations,the localized surface plasmon resonance effect of metallic Ag and the unique S-scheme charge transfer mechanism in 0D/0D/2D Ag/Ag_(2)CO_(3)/C_(3)N_(5) collaboratively strengthen the visible-light absorption,and facilitate the effective separation of powerful charge carriers,thereby significantly promoting the generation of reactive species like·OH^(-),h^(+)and·O_(2)^(-)for efficient oxytetracycline destruction.Moreover,four consecutive cycles demonstrate the reusability of Ag/Ag_(2)CO_(3)/C_(3)N_(5).Furthermore,the authentic water purification tests affirm its practical application potential.This work not only provides a candidate strategy for advancing S-scheme heterojunction photocatalysts but also makes a certain contribution to water decontamination.展开更多
Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(...Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.展开更多
Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed t...Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed that plasmonic coupling derived from assemblies could produce stronger electromagnetic field enhancement effects.Thus,plasmonic assemblies enable better performance in plasmon-based applications,such as enhanced fluorescence and Raman effects.This makes them hold great potential for trace analyte detection and nanomedicine.Herein,we focus on the recent advances in various plasmonic nanoassembles such as dimers,tetramers,and core-satellite structures,and discuss their applications in biosensing and cell imaging.The fabrication strategies for self-assembled plasmonic nanostructures are described,including top-down strategies,self-assembly methods linked by DNA,ligand,polymer,amino acid,or proteins,and chemical overgrowth methods.Thereafter,their applications in biosensor and cell imaging based on dark-field imaging,surface-enhanced Raman scattering,plasmonic circular dichroism,and fluorescence imaging are discussed.Finally,the remaining challenges and prospects are elucidated.展开更多
We developed one-pot photoreduction strategy to prepare near infrared light(NIR)-absorbing plasmonic gold nanoparticles(Au NPs) tethered by amphiphilic polypeptide copolymer poly(L-cysteine)-b-poly(ethylene oxide)(PLC...We developed one-pot photoreduction strategy to prepare near infrared light(NIR)-absorbing plasmonic gold nanoparticles(Au NPs) tethered by amphiphilic polypeptide copolymer poly(L-cysteine)-b-poly(ethylene oxide)(PLC-b-PEO). The PLC-b-PEO@Au NPs possessed strong NIR absorption at 700–1100 nm and ultrahigh photothermal conversion efficiency of 62.1%. Upon the NIR irradiation(808nm,2 W/cm^2,5 min), the PLC-b-PEO@Au NPs(1mg/mL) sharply attained an elevation of 30.8℃ and the hyperthermia effect could efficiently kill cancer cells in vitro. As for the PT-CT treatment, the doxorubicin(DOX)-loaded nanoparticles of DOX-PLC-b-PEO@Au NPs gave a combination index of 0.9 compared to single chemotherapy(CT) or photothermal therapy(PT), demonstrating a synergistic effect.展开更多
A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scan...A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).展开更多
A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong fie...A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62575185 and 62205223)Guangdong Basic and Applied Basic Research Foundation (Grant Nos.2023A1515110091 and 2023A1515011455)+1 种基金Department of Science and Technology of Guangdong Province(Grant Nos.2023QN10C200 and 2023QN10X082)Science and Technology Innovation Commission of Shenzhen (Grant Nos.20231121120748002 and JSGGKQTD20221101115701006)。
文摘Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate the effect of high-refractive-index dielectric substrates on the chiroptical response of individual chiral plasmonic nanoparticles. Using Au helicoid as an example, we observe that as the refractive index of the supporting substrate increases, there is a remarkable enhancement in the dissymmetry factor(g-factor), along with an abnormal peak separation between the absorption and scattering g-factor spectra, which is different from typical observations. This unique chiroptical evolution is attributed to the strong plasmon hybridization under circularly polarized in-plane excitation. To validate the universality of these findings, we vary the size and material of the helicoid, confirming the consistent occurrence of this phenomenon. Our findings provide valuable insights into the substrate effect of chiral plasmonic nanoparticles to facilitate their applications in on-chip devices and sensing technologies.
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China(AoE/P-502/20,C1015-21E,C5031-22G,CityU15303521,CityU11305223,CityU11310522,CityU11300123,and G-CityU 101/22)the City University of Hong Kong(9380131 and 7005867)the National Natural Science Foundation of China(62375232).
文摘Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties.Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored.We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices.In addition,we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping,not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications.Finally,potential research directions within this field are discussed.
基金supported by the National Natural Science Foundation of China(62335012,62371258,624B2075,62205160,62435010)Young Scientific and Technological Talents in Tianjin(QN20230227)Fundamental Research Funds for the Central Universities,Nankai University(63231159).
文摘Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.
基金supported by the National Natural Science Foundation of China(22162007)the Science and Technology Supporting Project of Guizhou Province([2021]480)+1 种基金the Science and Technology Supporting Project of Guizhou Province([2023)379)the Project from Guizhou Institute of Innovation and development of dual-carbon and new energy technologies(DCRE-2023-05)。
文摘Structural engineering enhances plasmonic stability and amplifies localized electric fields,yet the limited intrinsic activity of plasmonic materials necessitates integrating catalytic active sites.Herein,we design a yolk@shell nanoreactor featuring dual-plasmonic Au@CuS core-shell structures encapsulated by sulfur vacancy-rich ZnIn2S4(Sv-ZIS).The electromagnetic“hotspots”from Au and CuS near-field coupling concentrate incident light to boost hot-carrier generation and migration while sulfur vacancies in Sv-ZIS promote hydrogen evolution.This dual mechanism synergistically achieves 86.3 mmol g^(-1)h-1of H2production(65.6%quantum efficiency at 420 nm),maintaining 48.3 mmol g^(-1)h-1at 6℃.Density functional theory(DFT)simulations demonstrate that sulfur vacancies not only reduce the H*adsorption energy barrier from 0.87 to 0.11 eV but also amplify the interfacial electric field strength by 9%.Vacancy-redirected fields favor proton reduction pathways,accelerating charge transfer kinetics.Comparative studies confirm the universal superiority of dual-plasmonic architecture,while Sv-ZIS shells exhibit optimized activity through defect-mediated electronic interactions.This work provides a blueprint for bridging plasmonic field enhancement and defect engineering in multi-component photocatalysts.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1400700 and 2022YFA1404300)the National Natural Science Foundation of China(Grant Nos.12022403 and 62375123)the Natural Science Foundation of Jiangsu Province(Grant No.BK20243009).
文摘Plasmonic colors are attracting attention for their subwavelength small size,vibrant hues,and environmental sustainability beyond traditional pigments while suffering from angular and/or polarization dependency due to distinct excitations of lattice resonances and/or surface plasmon polaritons(SPPs).Here,we demonstrate the sodium metasurface-based plasmonic color palettes with polarization-independent wide-view angle(approximately>〓〓60 deg in experiment and up to〓〓90 deg in theory)and single-particlelevel pixel size(down to∼60 nm)that integrate both pigment-like and structure coloring advantages,fabricated by the templated nanorod-pixelated solidification of wetted liquid metals.Such intriguing performances are mainly attributed to the particle plasmon dominant spectral response by steering the filling profile and thus the interplay between localized surface plasmons and SPPs.Combining low material cost,potentially scalable manufacturing process,and pronounced optical performance,the proposed sodium-based metasurfaces will provide a promising route for advanced color information technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.62422503,62105080,22004016,and U22A2093)the Guangdong Basic and Applied Basic Research Foundation Regional Joint Fund(Grant Nos.2023A1515011944,2020B1515130006,and 2021B515120056)+1 种基金the Talent Recruitment Project of Guangdong(Grant No.2021QN02X179)the Science and Technology Innovation Commission of Shenzhen(Grant Nos.JCYJ20220531095604009 and RCYX20221008092907027).
文摘Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distinguished by their high output complexity and expansive response space,offer a promising alternative to conventional electronic counterparts.For practical authentications,the expansion of optical PUF keys usually involves intricate spatial or spectral shaping of excitation light using bulky external apparatus,which largely hinders the applications of optical PUFs.Here,we report a plasmonic PUF system based on heterogeneous nanostructures.The template-assisted shadow deposition technique was employed to adjust the morphological diversity of densely packed metal nanoparticles in individual PUFs.Transmission images were processed via a hash algorithm,and the generated PUF keys with a scalable capacity from 2875 to 243401 exhibit excellent uniqueness,randomness,and reproducibility.Furthermore,the wavelength and the polarization state of the excitation light are harnessed as two distinct expanding strategies,offering the potential for multiscenario applications via a single PUF.Overall,our reported plasmonic PUFs operated with the multidimensional expanding strategy are envisaged to serve as easy-to-integrate,easy-to-use systems and promise efficacy across a broad spectrum of applications,from anticounterfeiting to data encryption and authentication.
基金supported by the National Natural Science Foundation of China(No.52276094)the Education Project of Hunan Provincial Department(Nos.20B602 and 22C0112)+2 种基金the Industry University Education Cooperation Project(No.230803117185211)the Research Project on Teaching Reform in Ordinary Undergraduate Universities in Hunan Province(No.202401000142)the Natural Science Foundation of Hunan Province(No.2020JJ4935)。
文摘There is limited amount of research on surface plasmon resonance(SPR)sensors with self-referencing capabilities which are based on dielectric gratings.In the short-wavelength range,a metal grating sensor is capable of simultaneously measuring liquid refractive index under proposed temperature.A fabricated gold grating is placed on one side of a thin gold film for refractive index measurement,while the other with polydimethylsiloxane(PDMS)is deposited on the other side for temperature measurement.We use finite element analysis to research its sensing characteristics.Due to the high refractive index sensitivity of SPR sensors and thermo-optic coefficient of PDMS,we discovered the maximum spectral sensitivity of the sensor is 564 nm/RIU and-50 pm/℃when the liquid refractive index ranges from 1.30 to 1.40 with temperature ranging from 0℃ to 100℃.Numerical results indicate that there may not be mutual interference between two channels for measuring refractive index and temperature,which reduces the complexity of sensor measurements.
基金supported by the National Natural Science Foundationof China (No.52276216)the International Partnership Program ofChinese Academy of Sciences (No.123GJHZ2022055MI)+1 种基金the AnhuiProvincial Natural Science Foundation (No.2108085UD03)the Fundamental Research Funds for the Central Universities
文摘The construction of a well-defined and efficient Z-scheme heterostructure with enhanced photogenerated charge carriers and their rapid transfer is vital for realizing efficient photocatalytic hydrogen production,to achieve carbon neutrality.Herein,we study the H_(2)evolution reaction by rationally constructing a hybrid Au-anchored UiO-66-NH_(2)with localized surface plasmon resonance(LSPR)properties,embedded with ZnIn_(2)S_(4)/MoS_(2)nanosheets.Interestingly,the synergistic effect of excellent heterojunction,tunes additional catalytic active sites,provides effective separation of photogenerated charges at the junction interface and establishes a dedicated microenvironment for the boosted electron transfer.Notably,the optimized hybrid photocatalyst(Au6@U6N)15/ZIS/MS5 exhibits highly efficient H_(2)generation of 58.2 mmol g^(-1)h^(-1),which is almost 16 and 1.5 folds of the pristine ZIS and MS/U6N/ZIS,correspondingly.It has an apparent quantum efficiency of 19.6%at a wavelength of 420 nm,surpassing several reported MOF-based ZnIn_(2)S_(4)photocatalytic H_(2)evolution activities.Significantly,this research provides insights into the design of interface-engineered plasmonic MOF with layered encapsulated heterostructures that elucidate the role of plasmonic LSPR effect and efficiently regulate the charge transfer with enhanced microchannels,hence boosting the visible-light-driven photocatalytic activity for realizing efficient green energy conversion.
基金supported in part by the Natural Science Foundation of Tianjin(No.19JCYBJC16100)the Tianjin Innovation and Entrepreneurship Training Program(No.202210060027)。
文摘A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems.
基金financial supports from National Natural Science Foundation of China(No.61905051)Natural Science Foundation of Heilongjiang Province(No.LH2020F027).
文摘Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.
文摘Tamm plasmon polaritons(TPPs)are localized photonic states at the interface between a metal layer and one-dimensional(1D)photonic crystal substrate.Unlike surface plasmon polaritons(SPPs),TPPs can be excited by both transverse magnetic and electric waves without requiring additional coupling optics.TPPs offer robust color filtering,making them ideal for applications such as complementary metal oxide semiconductor(CMOS)image detectors.However,obtaining a large-area,reversible,and reconfigurable filter remains challenging.This study demonstrates a dynamically reconfigurable reflective color filter by integrating an ultrathin antimony trisulfide(Sb_(2)S_(3))layer with Tamm plasmonic photonic crystals.Reconfigurable tuning was achieved by inducing Sb_(2)S_(3) crystallization and reamorphization via thermal and optical activation,respectively.The material exhibited good stability after multiple switching cycles.The reflectance spectrum can be tuned across the visible range,with a shift of approximately 50 nm by switching Sb_(2)S_(3) between its amorphous and crystalline phases.This phase transition is nonvolatile and substantially minimizes the energy consumption,enhancing efficiency for practical applications.Tamm plasmonic photonic crystals are low-cost and large-scale production,offering a platform for compact color display systems and customizable photonic crystal filters for realistic system integration.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11804288)the Key Scientific Research Project of Higher Education Institutions in Henan Province, China (Grant No. 20231205164502999)。
文摘Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons(SPPs) of the graphene and localized surface phonon polaritons(LSPh P) of nanospheres. We exam nanospheres consisted of several different materials, including SiO_(2), Si C, Zn Se, Na Cl, ln Sb. Our results suggest that the LSPh P of Na Cl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for Na Cl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica(SiO_(2)) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for Na Cl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.
基金supported by the National Natural Science Foundation of China(Grant No.52106099)the Taishan Scholars Program of Shandong.
文摘The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielectric materials can concentrate and manipulate light at the nanoscale,they cannot provide sufficient photothermal efficiency in a direct absorption solar collector.Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance.This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak,leading to a substantial enhancement of photothermal conversion efficiency.The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles,achieving a 38%increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path.The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field,causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution.Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size.Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization.
基金supported by the National Natural Science Foundation of China(Nos.52372090 and 52073177)the National Natural Science Foundation of Guangdong,China(No.2023A1515010947)Shenzhen Basic Research Program(No.JCYJ20220531102207017).
文摘Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.
文摘Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.Herein,an S-scheme Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst was developed via a simple in situ chemical deposition procedure,and further photoreduction operation made metallic Ag(size:3.5–12.5 nm)being in situ formed on Ag_(2)CO_(3)/C_(3)N_(5) for a plasmonic S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst.Consequently,Ag/Ag_(2)CO_(3)/C_(3)N_(5) manifests pronouncedly upgraded photocatalytic performance toward oxytetracycline degradation with a superior photoreaction rate constant of 0.0475 min‒1,which is 13.2,3.9 and 2.2 folds that of C_(3)N_(5),Ag_(2)CO_(3),and Ag_(2)CO_(3)/C_(3)N_(5),respectively.As evidenced by comprehensive characterizations and density functional theory calculations,the localized surface plasmon resonance effect of metallic Ag and the unique S-scheme charge transfer mechanism in 0D/0D/2D Ag/Ag_(2)CO_(3)/C_(3)N_(5) collaboratively strengthen the visible-light absorption,and facilitate the effective separation of powerful charge carriers,thereby significantly promoting the generation of reactive species like·OH^(-),h^(+)and·O_(2)^(-)for efficient oxytetracycline destruction.Moreover,four consecutive cycles demonstrate the reusability of Ag/Ag_(2)CO_(3)/C_(3)N_(5).Furthermore,the authentic water purification tests affirm its practical application potential.This work not only provides a candidate strategy for advancing S-scheme heterojunction photocatalysts but also makes a certain contribution to water decontamination.
基金We acknowledge the financial support by the National Natural Science Foundation of China(91623105 and 52005175)Natural Science Foundation of Hunan Province of China(2020JJ5059).
文摘Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.
基金supported by grants from the National Natural Science Foundation of China(Nos.22022412,22274076,21874155)the Primary Research&Development Plan of Jiangsu Province(No.BE2022793)。
文摘Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed that plasmonic coupling derived from assemblies could produce stronger electromagnetic field enhancement effects.Thus,plasmonic assemblies enable better performance in plasmon-based applications,such as enhanced fluorescence and Raman effects.This makes them hold great potential for trace analyte detection and nanomedicine.Herein,we focus on the recent advances in various plasmonic nanoassembles such as dimers,tetramers,and core-satellite structures,and discuss their applications in biosensing and cell imaging.The fabrication strategies for self-assembled plasmonic nanostructures are described,including top-down strategies,self-assembly methods linked by DNA,ligand,polymer,amino acid,or proteins,and chemical overgrowth methods.Thereafter,their applications in biosensor and cell imaging based on dark-field imaging,surface-enhanced Raman scattering,plasmonic circular dichroism,and fluorescence imaging are discussed.Finally,the remaining challenges and prospects are elucidated.
基金The National Natural Science Foundation of China (No. 21474061)The Innovation Fund (No. IFPM2016B004) of Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus are appreciated
文摘We developed one-pot photoreduction strategy to prepare near infrared light(NIR)-absorbing plasmonic gold nanoparticles(Au NPs) tethered by amphiphilic polypeptide copolymer poly(L-cysteine)-b-poly(ethylene oxide)(PLC-b-PEO). The PLC-b-PEO@Au NPs possessed strong NIR absorption at 700–1100 nm and ultrahigh photothermal conversion efficiency of 62.1%. Upon the NIR irradiation(808nm,2 W/cm^2,5 min), the PLC-b-PEO@Au NPs(1mg/mL) sharply attained an elevation of 30.8℃ and the hyperthermia effect could efficiently kill cancer cells in vitro. As for the PT-CT treatment, the doxorubicin(DOX)-loaded nanoparticles of DOX-PLC-b-PEO@Au NPs gave a combination index of 0.9 compared to single chemotherapy(CT) or photothermal therapy(PT), demonstrating a synergistic effect.
基金supported by the National Natural Science Foundation of China(41573118)Research Foundation of Education Bureau of Hunan Province,China(14B177)Special Project of Xiangtan University~~
文摘A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).
基金Project supported by the National Natural Science Foundation of China(Grant No.61172044)the Natural Science Foundation of Hebei Province,China(Grant No.F2014501150)
文摘A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.