The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g...The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders ...Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption.Even though desert sand is sufficiently available,it is not usable for realizing stable concrete due to its surface shape.Against this background,the suitability of energy-efficient‘cold'dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution.It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains.As a result,the mass flow of treated sand is decreased due to an improved wedging of sand grains.This leads to a certain increase in compressive strength of concrete samples.Even though this increase is marginal,the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven,showing its basic potential for the treatment and preconditioning of sand used for concrete,mortar or plastering.展开更多
The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method na...The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method named plasma-based atom-selective etching(PASE)is proposed to achieve the highly efficient,atomic-scale,and damage-free polishing of β-Ga_(2)O_(3).The plasma is excited through the inductive coupling principle and carbon tetrafluoride is utilized as the main reaction gas to etch β-Ga_(2)O_(3).The core of PASE polishing of β-Ga_(2)O_(3)is the remarkable lateral etching effect,which is ensured by both the intrinsic property of the surface and the extrinsic temperature condition.As revealed by density functional theory-based calculations,the intrinsic difference in the etching energy barrier of atoms at the step edge(2.36 eV)and in the terrace plane(4.37 eV)determines their difference in the etching rate,and their etching rate difference can be greatly enlarged by increasing the extrinsic temperature.The polishing of β-Ga_(2)O_(3)based on the lateral etching effect is further verified in the etching experiments.The Sa roughness of β-Ga_(2)O_(3)(001)substrate is reduced from 14.8 nm to 0.057 nm within 120 s,and the corresponding material removal rate reaches up to 20.96μm·min^(−1).The polished β-Ga_(2)O_(3)displays significantly improved crystalline quality and photoluminescence intensity,and the polishing effect of PASE is independent of the crystal face of β-Ga_(2)O_(3).In addition,the competition between chemical etching and physical reconstruction,which is determined by temperature and greatly affects the surface state of β-Ga_(2)O_(3),is deeply studied for the first time.These findings not only demonstrate the high-efficiency and high-quality polishing of β-Ga_(2)O_(3)via atmospheric plasma etching but also hold significant implications for guiding future plasma-based surface manufacturing of β-Ga_(2)O_(3).展开更多
Large-scale proteomics studies can refine our understanding of health and disease and enable precision medicine.Here,we provide a detailed atlas of 2,920 plasma proteins linking to diseases(406 prevalent and 660 incid...Large-scale proteomics studies can refine our understanding of health and disease and enable precision medicine.Here,we provide a detailed atlas of 2,920 plasma proteins linking to diseases(406 prevalent and 660 incident)and 986 health-related traits in 53,026 individuals(median follow-up:14.8 years)from the UK Biobank,representing the most comprehensive proteome profiles to date.This atlas revealed 168,100 protein-disease associations and 554,488 protein-trait associations.Over 650 proteins were shared among at least 50 diseases,and over 1,000 showed sex and age heterogeneity.Furthermore,proteins demonstrated promising potential in disease discrimination(area under the curve[AUC]>0.80 in 183 diseases).Finally,integrating protein quantitative trait locus data determined 474 causal proteins,providing 37 drug-repurposing opportunities and 26 promising targets with favorable safety profiles.These results provide an open-access comprehensive proteome-phenome resource(https://proteome-phenome-atlas.com/)to help elucidate the biological mechanisms of diseases and accelerate the development of disease biomarkers,prediction models,and therapeutic targets.展开更多
The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill ...The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.展开更多
To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conver...To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conversion methods including thermal catalysis,biocatalysis,electrocatalysis,photocatalysis,and plasma catalysis.Then,a comprehensive overview of the currently explored plasma driven CO_(2)conversion is presented,such as microwave discharge plasma,gliding arc discharge plasma,radiofrequency inductively coupled plasma,and dielectric barrier discharge plasma,with an emphasis on their experimental setups,achievements and limitations.Furthermore,the activation of CO_(2)conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail.Finally,the associated challenges and future development trends for plasma catalytic CO_(2)conversion are briefly concluded.展开更多
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die...Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.展开更多
Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure e...Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure evolution and magnetic field permeability is studied using a B-dot probe array system,combing with high-speed camera and electrical parameter measurement.Further discussions explained the mechanism how the magnetic permeation characteristics affect the energy deposition between circuit and plasma.展开更多
The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is ...The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is currently a lack of effective means to visualize the boundary layer.In this study,the Nitric Oxide Planar Laser-Induced Fluorescence(NO-PLIF)technique was employed to visualize the boundary layer of a compression ramp in a 50-MW arc-heated plasma wind tunnel.Görtler-like vortex structures were observed in the boundary layer of the ramp.This is the first time that Görtler vortices have been clearly observed in a high-enthalpy plasma flow.By varying the flow conditions,the Görtler vortices persisted in the boundary layer of the ramp when the total enthalpy of the arc-heated wind tunnel exceeded 12.3 MJ/kg.Several image processing techniques were applied to extract the structure of high-speed Görtler streaks,and the position of the high-speed streaks was found to be non-fixed,whereas the average Görtler wavelength remained at approximately 30 mm at a 10°ramp and showed limited variation with the total enthalpy.Additionally,a sheet-forming optics system with an adjustable angle and height was designed to enable visualization of the Görtler vortices in the boundary layer of the ramp at different angles and heights.The vortices on the low-angle ramp exhibited better stability and shorter wavelengths.Visualization results at different heights confirmed that the Görtler vortex wavelength was approximately twice the boundary layer thickness.This study demonstrates the feasibility and potential of the PLIF technique for the visualization of the boundary layer in plasma flows,especially with regard to Görtler vortices.展开更多
We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)pho...We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).展开更多
BACKGROUND The atherogenic index of plasma(AIP)has been shown to be positively correlated with cardiovascular disease in previous studies.However,it is unclear whether elderly people with long-term high AIP levels are...BACKGROUND The atherogenic index of plasma(AIP)has been shown to be positively correlated with cardiovascular disease in previous studies.However,it is unclear whether elderly people with long-term high AIP levels are more likely to develop coronary heart disease(CHD).Therefore,the aim of this study was to investigate the relationship between AIP trajectory and CHD incidence in elderly people.METHODS 19,194 participants aged≥60 years who had three AIP measurements between 2018 and 2020 were included in this study.AIP was defined as log10(triglyceride/high-density lipoprotein cholesterol).The group-based trajectory model was used to identify different trajectory patterns of AIP from 2018 to 2020.Cox proportional hazards models were used to estimate the hazard ratio(HR)with 95%CI of CHD events between different trajectory groups from 2020 to 2023.RESULTS Three different trajectory patterns were identified through group-based trajectory model:the low-level group(n=7410,mean AIP:-0.25 to-0.17),the medium-level group(n=9981,mean AIP:0.02-0.08),and the high-level group(n=1803,mean AIP:0.38-0.42).During a mean follow-up of 2.65 years,a total of 1391 participants developed CHD.After adjusting for potential confounders,compared with the participants in the low-level group,the HR with 95%CI of the medium-level group and the high-level group were estimated to be 1.24(1.10-1.40)and 1.43(1.19-1.73),respectively.These findings remained consistent in subgroup analyses and sensitivity analyses.CONCLUSIONS There was a significant correlation between persistent high AIP level and increased CHD risk in the elderly.This suggests that monitoring the long-term changes in AIP is helpful to identify individuals at high CHD risk in elderly people.展开更多
Circulating plasma cells(CPCs)in patients of plasma cell neoplasm have been an area of intense research in recent decades.Circulating tumor plasma cells(CTPCs)might represent a sub-clone of tumor cells that have exite...Circulating plasma cells(CPCs)in patients of plasma cell neoplasm have been an area of intense research in recent decades.Circulating tumor plasma cells(CTPCs)might represent a sub-clone of tumor cells that have exited into peripheral blood as a result of the dynamic interactions between the bone marrow(BM)microenvironment and neoplastic plasma cells.Chemokine receptors like chemokine receptor 4(CXCR4)and integrins are known to play a role in homing and migration of plasma cells(PCs).The hypoxic microenvironment in the BM niche also contributes to their circulation through various mechanisms.In addition,the CCL3–CCR1 axis probably competes with the retention signals from the CXCR4–α4β1(VLA-4)interaction and actively promotes the exit of PCs from the BM.CTPCs,even in extremely low numbers,can be detected and quantified by high-sensitivity techniques like multi-color flow cytometry and next-generation sequencing.High load of CTPCs noted in patients of plasma cell neoplasm;monoclonal gammopathy of undetermined significance(MGUS),smoldering multiple myeloma(SMM),multiple myeloma(MM)is a strong predictor of shorter progression free survival(PFS)as well as overall survival(OS).In newly diagnosed patients of MM,a load of CTPCs correlates with the outcomes,i.e.,OS and PFS.With more studies collaborating on the results of previous reports,assessment of the burden of CTPCs may become a complimentary approach for non-invasive risk stratification of MM patients and evaluating the response to therapy.Future research on larger cohorts and longer follow-ups may help to improve the existing staging system by incorporating the load of CTPCs as one of the prognostic indicators.Further studies based on isolation and genetic characterization of CTPCs may help in understanding the pathophysiology of the progression of the disease and may open avenues for newer treatment modalities.This review discusses the pathobiological aspects leading to circulation of neoplastic/tumor plasma cells in peripheral blood and provides a summary of research work done in last two decades on its prognostic importance in various plasma cells neoplasms.展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep s...The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype.展开更多
We study the Rayleigh-Taylor instability(RTI)of electrostatic plane wave perturbations in compressible relativistic magnetoplasma fluids with thermal ions under gravity in three different cases of when(ⅰ)electrons ar...We study the Rayleigh-Taylor instability(RTI)of electrostatic plane wave perturbations in compressible relativistic magnetoplasma fluids with thermal ions under gravity in three different cases of when(ⅰ)electrons are in isothermal equilibrium,i.e.,classical or nondegenerate,(ⅱ)electrons are fully degenerate(with Te=0),and(ⅲ)electrons are partially degenerate or have finite temperature degeneracy(with Te≠0).While in the cases of(ⅰ)and(ⅲ),we focus on the regimes where the particle's thermal energy is more or less than the rest mass energy,i.e.,βe≡kBTe/mec2<1or>1,the case(ⅱ)considers from weakly to ultra-relativistic degenerate regimes.A general expression of the growth rate of instability is obtained and analyzed in the three different cases relevant to laboratory and astrophysical plasmas,which generalize and advance the previous theory on RTI.展开更多
Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr...Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.展开更多
In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave ...In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
文摘The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金funded by the Bundesministerium für Bildung und Forschung(Nos.13FH6I06IA and 13FH6I08IA)。
文摘Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption.Even though desert sand is sufficiently available,it is not usable for realizing stable concrete due to its surface shape.Against this background,the suitability of energy-efficient‘cold'dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution.It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains.As a result,the mass flow of treated sand is decreased due to an improved wedging of sand grains.This leads to a certain increase in compressive strength of concrete samples.Even though this increase is marginal,the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven,showing its basic potential for the treatment and preconditioning of sand used for concrete,mortar or plastering.
基金supported by the National Natural Science Foundation of China(52375437,52035009)the Natural Science Foundation of Guangdong Province(2024B1515020027)+2 种基金the Shenzhen Science and Technology Program(Grant No.KQTD20170810110250357)for the financial supportthe assistance of SUSTech Core Research Facilitiessupported by Shenzhen Engineering Research Center for Semiconductorspecific Equipment。
文摘The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method named plasma-based atom-selective etching(PASE)is proposed to achieve the highly efficient,atomic-scale,and damage-free polishing of β-Ga_(2)O_(3).The plasma is excited through the inductive coupling principle and carbon tetrafluoride is utilized as the main reaction gas to etch β-Ga_(2)O_(3).The core of PASE polishing of β-Ga_(2)O_(3)is the remarkable lateral etching effect,which is ensured by both the intrinsic property of the surface and the extrinsic temperature condition.As revealed by density functional theory-based calculations,the intrinsic difference in the etching energy barrier of atoms at the step edge(2.36 eV)and in the terrace plane(4.37 eV)determines their difference in the etching rate,and their etching rate difference can be greatly enlarged by increasing the extrinsic temperature.The polishing of β-Ga_(2)O_(3)based on the lateral etching effect is further verified in the etching experiments.The Sa roughness of β-Ga_(2)O_(3)(001)substrate is reduced from 14.8 nm to 0.057 nm within 120 s,and the corresponding material removal rate reaches up to 20.96μm·min^(−1).The polished β-Ga_(2)O_(3)displays significantly improved crystalline quality and photoluminescence intensity,and the polishing effect of PASE is independent of the crystal face of β-Ga_(2)O_(3).In addition,the competition between chemical etching and physical reconstruction,which is determined by temperature and greatly affects the surface state of β-Ga_(2)O_(3),is deeply studied for the first time.These findings not only demonstrate the high-efficiency and high-quality polishing of β-Ga_(2)O_(3)via atmospheric plasma etching but also hold significant implications for guiding future plasma-based surface manufacturing of β-Ga_(2)O_(3).
文摘Large-scale proteomics studies can refine our understanding of health and disease and enable precision medicine.Here,we provide a detailed atlas of 2,920 plasma proteins linking to diseases(406 prevalent and 660 incident)and 986 health-related traits in 53,026 individuals(median follow-up:14.8 years)from the UK Biobank,representing the most comprehensive proteome profiles to date.This atlas revealed 168,100 protein-disease associations and 554,488 protein-trait associations.Over 650 proteins were shared among at least 50 diseases,and over 1,000 showed sex and age heterogeneity.Furthermore,proteins demonstrated promising potential in disease discrimination(area under the curve[AUC]>0.80 in 183 diseases).Finally,integrating protein quantitative trait locus data determined 474 causal proteins,providing 37 drug-repurposing opportunities and 26 promising targets with favorable safety profiles.These results provide an open-access comprehensive proteome-phenome resource(https://proteome-phenome-atlas.com/)to help elucidate the biological mechanisms of diseases and accelerate the development of disease biomarkers,prediction models,and therapeutic targets.
基金support from the National Natural Science Foundation of China(Grant Nos.11775204 and 12105269)the Presidential Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018011)。
文摘The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.
基金supported by the National Natural Science Foundation of China(Grant No.22072010)Natural Science Foundation of Chongqing Municipality(Grant No.CSTB2024NSCQLZX0101)+2 种基金Natural Science Foundation of Chongqing(Grant No.cstc2021ycjh-bgzxm0181)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300629)Institute for Advanced Sciences(Grant No.E011A2022325).
文摘To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conversion methods including thermal catalysis,biocatalysis,electrocatalysis,photocatalysis,and plasma catalysis.Then,a comprehensive overview of the currently explored plasma driven CO_(2)conversion is presented,such as microwave discharge plasma,gliding arc discharge plasma,radiofrequency inductively coupled plasma,and dielectric barrier discharge plasma,with an emphasis on their experimental setups,achievements and limitations.Furthermore,the activation of CO_(2)conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail.Finally,the associated challenges and future development trends for plasma catalytic CO_(2)conversion are briefly concluded.
基金the financial support from National Natural Science Foundation of China(Nos.22078125 and 52004102)Postdoctoral Science Foundation of China(No.2023M741472)。
文摘Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.T2221002)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12305286)。
文摘Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure evolution and magnetic field permeability is studied using a B-dot probe array system,combing with high-speed camera and electrical parameter measurement.Further discussions explained the mechanism how the magnetic permeation characteristics affect the energy deposition between circuit and plasma.
基金supported by the National Natural Science Foundation of China(Nos.62175053,62305087)。
文摘The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is currently a lack of effective means to visualize the boundary layer.In this study,the Nitric Oxide Planar Laser-Induced Fluorescence(NO-PLIF)technique was employed to visualize the boundary layer of a compression ramp in a 50-MW arc-heated plasma wind tunnel.Görtler-like vortex structures were observed in the boundary layer of the ramp.This is the first time that Görtler vortices have been clearly observed in a high-enthalpy plasma flow.By varying the flow conditions,the Görtler vortices persisted in the boundary layer of the ramp when the total enthalpy of the arc-heated wind tunnel exceeded 12.3 MJ/kg.Several image processing techniques were applied to extract the structure of high-speed Görtler streaks,and the position of the high-speed streaks was found to be non-fixed,whereas the average Görtler wavelength remained at approximately 30 mm at a 10°ramp and showed limited variation with the total enthalpy.Additionally,a sheet-forming optics system with an adjustable angle and height was designed to enable visualization of the Görtler vortices in the boundary layer of the ramp at different angles and heights.The vortices on the low-angle ramp exhibited better stability and shorter wavelengths.Visualization results at different heights confirmed that the Görtler vortex wavelength was approximately twice the boundary layer thickness.This study demonstrates the feasibility and potential of the PLIF technique for the visualization of the boundary layer in plasma flows,especially with regard to Görtler vortices.
基金supported by the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230204)the National Natural Science Foundation of China(Project No.12075046).
文摘We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).
基金supported by the National Key Research and Development Program of China(2017YFC1307705).
文摘BACKGROUND The atherogenic index of plasma(AIP)has been shown to be positively correlated with cardiovascular disease in previous studies.However,it is unclear whether elderly people with long-term high AIP levels are more likely to develop coronary heart disease(CHD).Therefore,the aim of this study was to investigate the relationship between AIP trajectory and CHD incidence in elderly people.METHODS 19,194 participants aged≥60 years who had three AIP measurements between 2018 and 2020 were included in this study.AIP was defined as log10(triglyceride/high-density lipoprotein cholesterol).The group-based trajectory model was used to identify different trajectory patterns of AIP from 2018 to 2020.Cox proportional hazards models were used to estimate the hazard ratio(HR)with 95%CI of CHD events between different trajectory groups from 2020 to 2023.RESULTS Three different trajectory patterns were identified through group-based trajectory model:the low-level group(n=7410,mean AIP:-0.25 to-0.17),the medium-level group(n=9981,mean AIP:0.02-0.08),and the high-level group(n=1803,mean AIP:0.38-0.42).During a mean follow-up of 2.65 years,a total of 1391 participants developed CHD.After adjusting for potential confounders,compared with the participants in the low-level group,the HR with 95%CI of the medium-level group and the high-level group were estimated to be 1.24(1.10-1.40)and 1.43(1.19-1.73),respectively.These findings remained consistent in subgroup analyses and sensitivity analyses.CONCLUSIONS There was a significant correlation between persistent high AIP level and increased CHD risk in the elderly.This suggests that monitoring the long-term changes in AIP is helpful to identify individuals at high CHD risk in elderly people.
文摘Circulating plasma cells(CPCs)in patients of plasma cell neoplasm have been an area of intense research in recent decades.Circulating tumor plasma cells(CTPCs)might represent a sub-clone of tumor cells that have exited into peripheral blood as a result of the dynamic interactions between the bone marrow(BM)microenvironment and neoplastic plasma cells.Chemokine receptors like chemokine receptor 4(CXCR4)and integrins are known to play a role in homing and migration of plasma cells(PCs).The hypoxic microenvironment in the BM niche also contributes to their circulation through various mechanisms.In addition,the CCL3–CCR1 axis probably competes with the retention signals from the CXCR4–α4β1(VLA-4)interaction and actively promotes the exit of PCs from the BM.CTPCs,even in extremely low numbers,can be detected and quantified by high-sensitivity techniques like multi-color flow cytometry and next-generation sequencing.High load of CTPCs noted in patients of plasma cell neoplasm;monoclonal gammopathy of undetermined significance(MGUS),smoldering multiple myeloma(SMM),multiple myeloma(MM)is a strong predictor of shorter progression free survival(PFS)as well as overall survival(OS).In newly diagnosed patients of MM,a load of CTPCs correlates with the outcomes,i.e.,OS and PFS.With more studies collaborating on the results of previous reports,assessment of the burden of CTPCs may become a complimentary approach for non-invasive risk stratification of MM patients and evaluating the response to therapy.Future research on larger cohorts and longer follow-ups may help to improve the existing staging system by incorporating the load of CTPCs as one of the prognostic indicators.Further studies based on isolation and genetic characterization of CTPCs may help in understanding the pathophysiology of the progression of the disease and may open avenues for newer treatment modalities.This review discusses the pathobiological aspects leading to circulation of neoplastic/tumor plasma cells in peripheral blood and provides a summary of research work done in last two decades on its prognostic importance in various plasma cells neoplasms.
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
基金supported by National Natural Science Foundation of China (NSFC) (Nos.62201217 and 51821005)。
文摘The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype.
基金support from the University Grants Commission(UGC),Government of India,for a Senior Research Fellowship(SRF)with Ref.No.1161/(CSIR-UGC NET DEC.2018)and 16-6(DEC.2018)/2019(NET/CSIR)。
文摘We study the Rayleigh-Taylor instability(RTI)of electrostatic plane wave perturbations in compressible relativistic magnetoplasma fluids with thermal ions under gravity in three different cases of when(ⅰ)electrons are in isothermal equilibrium,i.e.,classical or nondegenerate,(ⅱ)electrons are fully degenerate(with Te=0),and(ⅲ)electrons are partially degenerate or have finite temperature degeneracy(with Te≠0).While in the cases of(ⅰ)and(ⅲ),we focus on the regimes where the particle's thermal energy is more or less than the rest mass energy,i.e.,βe≡kBTe/mec2<1or>1,the case(ⅱ)considers from weakly to ultra-relativistic degenerate regimes.A general expression of the growth rate of instability is obtained and analyzed in the three different cases relevant to laboratory and astrophysical plasmas,which generalize and advance the previous theory on RTI.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure Activity (Application No. 23068)carried out within the framework of EUROfusion Enabling Research Projects AWP21-ENR-01-CEA02 and AWP24-ENR-IFE-02-CEA-02+3 种基金received funding from Euratom Research and Training Programme 2021–2025 under Grant No. 633053supported by the Ministry of Youth and Sports of the Czech Republic [Project No. LM2023068 (PALS RI)]by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030200 and XDA25010100)supported by COST (European Cooperation in Science and Technology) through Action CA21128 PROBONO (PROton BOron Nuclear Fusion: from energy production to medical applicatiOns)
文摘Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.
基金supported by National Natural Science Foundation of China(Nos.52077026,51977023,52177126 and 12475253)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)the Dalian Life&Health Guiding Project(No.2023ZXYG34)。
文摘In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.