This review focused on the role of plant growth-promoting rhizobacteria(PGPR)in enhancing plant growth and protecting against pathogens,highlighting their mechanisms of action,ecological benefits,and challenges.PGPR m...This review focused on the role of plant growth-promoting rhizobacteria(PGPR)in enhancing plant growth and protecting against pathogens,highlighting their mechanisms of action,ecological benefits,and challenges.PGPR mediate plant growth through several mechanisms,including nutrient acquisition,production of antimicrobial compounds and induction of systemic resistance.These mechanisms are critical in improving crop yields,especially under stressful conditions.This review examines the molecular mechanisms of PGPR-mediated plant pathogen control,cellular mechanisms of PGPR in plant pathogen control,ecological and environmental benefits of PGPR application.Despite their potential,PGPR application is limited by environmental variability,inconsistent efficacy,and challenges in formulation and commercialization.The review discusses these challenges and also provides solutions.Additionally,the review outlines the latest advancements in PGPR strain selection and their genetic modifications for enhanced resilience and biocontrol efficacy.PGPR are particularly crucial in addressing global food security challenges,exacerbated by climate change,and the need for sustainable agricultural practices.PGPR have been shown to increase crop yields by 20%–30%in drought-prone regions and reduce pesticide use by up to 50%,contributing to more sustainable farming.As research advances,PGPR can play a key role in reducing chemical input dependency and promoting long-term agricultural sustainability.This review examines the role of PGPR in pathogen control and highlights their potential to enhance agricultural sustainability.展开更多
Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response...Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response to pathogenic threats,plants have developed sophisticated defense mechanisms,such as pattern-triggered immunity(PTI)and effector-triggered immunity(ETI),which rely on specialized recognition systems such as pattern recognition receptors(PRRs)and nucleotide-binding leucine-rich repeat(NLR)proteins.These immune responses activate intricate signaling pathways involving mitogen-activated protein kinase cascades,calcium fluxes,reactive oxygen species production,and hormonal cross-talk among salicylic acid,jasmonic acid,and ethylene.Furthermore,structural barriers such as callose deposition and lignification,along with the synthesis of secondary metabolites and antimicrobial enzymes,play crucial roles in inhibiting pathogen invasion and proliferation.The plant microbiome further enhances host immunity through beneficial associations with plant growth-promoting rhizobacteria(PGPR)and mycorrhizal fungi,which facilitate induced systemic resistance(ISR)and improve nutrient acquisition.As climate change exacerbates the impact of pathogens,these molecular and microbiome-driven defenses influence disease distribution and plant resilience,highlighting the importance of integrating ecological insights for sustainable disease management Advancements in microbiome engineering,including the application of synthetic microbial communities and commercial bio-inoculants,offer promising strategies for sustainable disease management.However,the impacts of climate change on pathogen virulence,host susceptibility,and disease distribution complicate these interactions,emphasizing the need for resilient and adaptive agricultural practices.This review highlights the necessity of a holistic,interdisciplinary approach that integrates multi-omics technologies,microbiome research,and ecological insights to develop effective and sustainable solutions for managing plant diseases and ensuring global food security.展开更多
In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogeni...In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.展开更多
Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investig...Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.展开更多
Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pecti...Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pectin.PGIPs,also known as leucine-rich repeat pathogenesis-related(PR)proteins,activate the host’s defense response upon interaction with PG,thereby reinforcing the host defense against plant pathogens attacks.In Egyptian or extra-long staple cotton(Gossypium barbadense),the interaction between PGIP and PG is one of the crucial steps in the defense mechanism against major pathogens such as Xanthomonas citri pv.malvacearum and Alternaria mac-rospora,which are responsible for bacterial leaf blight and leaf spot diseases,respectively.Results To unravel the molecular mechanisms underlying these PR proteins,we conducted a comprehensive study involving molecular modeling,protein-protein docking,site-specific double mutation(E169G and F242K),and molec-ular dynamics simulations.Both wild-type and mutated cotton PGIPs were examined in the interaction with the PG enzyme of a bacterial and fungal pathogen.Our findings revealed that changes in conformations of double-mutated residues in the active site of PGIP lead to the inhibition of PG binding.The molecular dynamics simulation studies provide insights into the dynamic behaviour and stability of the PGIP-PG complexes,shedding light on the intricate details of the inhibitory and exhibitory mechanism against the major fungal and bacterial pathogens of G.barbadense,respectively.Conclusions The findings of this study not only enhance our understanding of the molecular interactions between PGs of Xanthomonas citri pv.malvacearum and Alternaria macrospora and PGIP of G.barbadense but also pre-sent a potential strategy for developing the disease-resistant cotton varieties.By variations in the binding affinities of PGs through specific mutations in PGIP,this research offers promising avenues for the development of enhanced resistance to cotton plants against bacterial leaf blight and leaf spot diseases.展开更多
Inorganic phosphate(Pi)homeostasis in plants is regulated by inositol pyrophosphates(PP-InsPs),which mediate phosphate starvation responses.While beneficial microorganisms,such as arbuscular mycorrhizal fungi,contribu...Inorganic phosphate(Pi)homeostasis in plants is regulated by inositol pyrophosphates(PP-InsPs),which mediate phosphate starvation responses.While beneficial microorganisms,such as arbuscular mycorrhizal fungi,contribute to phosphate uptake,pathogenic fungi often exploit phosphate metabolism to enhance virulence.However,the exact mechanisms by which pathogens manipulate plant phosphate signaling remain largely unknown.Here,we highlight a recent study by Ulrich Schaffrath and colleagues(Science,2025)revealing that plant pathogenic fungi deploy conserved Nudix hydrolase effectors to hydrolyze PP-InsPs,thereby mimicking phosphate starvation and suppressing host immunity.These findings not only expand our understanding of plantpathogen interactions,but also open new avenues for crop protection and resistance breeding.展开更多
文摘This review focused on the role of plant growth-promoting rhizobacteria(PGPR)in enhancing plant growth and protecting against pathogens,highlighting their mechanisms of action,ecological benefits,and challenges.PGPR mediate plant growth through several mechanisms,including nutrient acquisition,production of antimicrobial compounds and induction of systemic resistance.These mechanisms are critical in improving crop yields,especially under stressful conditions.This review examines the molecular mechanisms of PGPR-mediated plant pathogen control,cellular mechanisms of PGPR in plant pathogen control,ecological and environmental benefits of PGPR application.Despite their potential,PGPR application is limited by environmental variability,inconsistent efficacy,and challenges in formulation and commercialization.The review discusses these challenges and also provides solutions.Additionally,the review outlines the latest advancements in PGPR strain selection and their genetic modifications for enhanced resilience and biocontrol efficacy.PGPR are particularly crucial in addressing global food security challenges,exacerbated by climate change,and the need for sustainable agricultural practices.PGPR have been shown to increase crop yields by 20%–30%in drought-prone regions and reduce pesticide use by up to 50%,contributing to more sustainable farming.As research advances,PGPR can play a key role in reducing chemical input dependency and promoting long-term agricultural sustainability.This review examines the role of PGPR in pathogen control and highlights their potential to enhance agricultural sustainability.
文摘Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response to pathogenic threats,plants have developed sophisticated defense mechanisms,such as pattern-triggered immunity(PTI)and effector-triggered immunity(ETI),which rely on specialized recognition systems such as pattern recognition receptors(PRRs)and nucleotide-binding leucine-rich repeat(NLR)proteins.These immune responses activate intricate signaling pathways involving mitogen-activated protein kinase cascades,calcium fluxes,reactive oxygen species production,and hormonal cross-talk among salicylic acid,jasmonic acid,and ethylene.Furthermore,structural barriers such as callose deposition and lignification,along with the synthesis of secondary metabolites and antimicrobial enzymes,play crucial roles in inhibiting pathogen invasion and proliferation.The plant microbiome further enhances host immunity through beneficial associations with plant growth-promoting rhizobacteria(PGPR)and mycorrhizal fungi,which facilitate induced systemic resistance(ISR)and improve nutrient acquisition.As climate change exacerbates the impact of pathogens,these molecular and microbiome-driven defenses influence disease distribution and plant resilience,highlighting the importance of integrating ecological insights for sustainable disease management Advancements in microbiome engineering,including the application of synthetic microbial communities and commercial bio-inoculants,offer promising strategies for sustainable disease management.However,the impacts of climate change on pathogen virulence,host susceptibility,and disease distribution complicate these interactions,emphasizing the need for resilient and adaptive agricultural practices.This review highlights the necessity of a holistic,interdisciplinary approach that integrates multi-omics technologies,microbiome research,and ecological insights to develop effective and sustainable solutions for managing plant diseases and ensuring global food security.
文摘In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
基金the National Natural Science Foundation of China(31201473)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-IVFCAAS)funded by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China
文摘Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.
基金CABin grant(F.no.Agril.Edn.4-1/2013-A&P)Indian Council of Agricul-tural Research,Ministry of Agriculture and Farmers’Welfare,Govt.of India and Department of Biotechnology,Govt.of India for BIC project grant(BT/PR40161/BTIS/137/32/2021)。
文摘Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pectin.PGIPs,also known as leucine-rich repeat pathogenesis-related(PR)proteins,activate the host’s defense response upon interaction with PG,thereby reinforcing the host defense against plant pathogens attacks.In Egyptian or extra-long staple cotton(Gossypium barbadense),the interaction between PGIP and PG is one of the crucial steps in the defense mechanism against major pathogens such as Xanthomonas citri pv.malvacearum and Alternaria mac-rospora,which are responsible for bacterial leaf blight and leaf spot diseases,respectively.Results To unravel the molecular mechanisms underlying these PR proteins,we conducted a comprehensive study involving molecular modeling,protein-protein docking,site-specific double mutation(E169G and F242K),and molec-ular dynamics simulations.Both wild-type and mutated cotton PGIPs were examined in the interaction with the PG enzyme of a bacterial and fungal pathogen.Our findings revealed that changes in conformations of double-mutated residues in the active site of PGIP lead to the inhibition of PG binding.The molecular dynamics simulation studies provide insights into the dynamic behaviour and stability of the PGIP-PG complexes,shedding light on the intricate details of the inhibitory and exhibitory mechanism against the major fungal and bacterial pathogens of G.barbadense,respectively.Conclusions The findings of this study not only enhance our understanding of the molecular interactions between PGs of Xanthomonas citri pv.malvacearum and Alternaria macrospora and PGIP of G.barbadense but also pre-sent a potential strategy for developing the disease-resistant cotton varieties.By variations in the binding affinities of PGs through specific mutations in PGIP,this research offers promising avenues for the development of enhanced resistance to cotton plants against bacterial leaf blight and leaf spot diseases.
基金the financial support from China Youth Science Foundation(22207037).
文摘Inorganic phosphate(Pi)homeostasis in plants is regulated by inositol pyrophosphates(PP-InsPs),which mediate phosphate starvation responses.While beneficial microorganisms,such as arbuscular mycorrhizal fungi,contribute to phosphate uptake,pathogenic fungi often exploit phosphate metabolism to enhance virulence.However,the exact mechanisms by which pathogens manipulate plant phosphate signaling remain largely unknown.Here,we highlight a recent study by Ulrich Schaffrath and colleagues(Science,2025)revealing that plant pathogenic fungi deploy conserved Nudix hydrolase effectors to hydrolyze PP-InsPs,thereby mimicking phosphate starvation and suppressing host immunity.These findings not only expand our understanding of plantpathogen interactions,but also open new avenues for crop protection and resistance breeding.