N6-methyladenosine(m^(6)A)modification,the most abundant internal modification in messenger RNA(mRNA)and long non-coding RNA(lncRNA),has emerged as a critical epitranscriptomic regulatory mechanism in eukaryotes.While...N6-methyladenosine(m^(6)A)modification,the most abundant internal modification in messenger RNA(mRNA)and long non-coding RNA(lncRNA),has emerged as a critical epitranscriptomic regulatory mechanism in eukaryotes.While the importance of m^(6)A modification in various biological processes has been recognized,a comprehensive understanding of its diverse roles in plant biology and agricultural applications remains fragmented.This review analyzes recent advances inm^(6)A modification's biological functions in plants.m^(6)A modification plays crucial roles in multiple aspects of plant life,including seed germination,organ development,and reproductive structure formation.Furthermore,m^(6)A has been found to significantly influence plant responses to environmental stresses,including salt,drought,temperature,and heavy metal exposure.We also uncover m^(6)A involvement in important agricultural traits.This review provides insights into the mechanistic understanding of m^(6)A modification in plants and highlights its applications in agricultural improvement,offering a foundation for future research in crop enhancement and stress resistance.展开更多
For decades,Xu has been committed to fulfilling the duty and mission of a scientist and educator—diving into the laws of nature,caring deeply for the nation,and earnestly cultivating younger generations.
Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,...Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.展开更多
Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges...Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).展开更多
Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations ...Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations of theseproducts are not without environmental,ecological,and cost concerns and the associated climate-change challenges.To alleviate this long-standing pressure on agriculture,designing and developing more biocompatible andsustainable plant stimulants are among the primary focuses of agricultural management.Over the recent decades,the field has witnessed significant progress in emerging naturally derived or nature-inspired nano-biostimulantswith large-active-surface areas,including bio-compounds,biopolymers,and nanocarbons.However,the extraction/preparation of these products may apply additional costs or require specific equipment.More recently,thefield's attention has shifted to the sustainable application of chemical-additive-free biostimulants towards practicalapplications in nano-agriculture.Herein,we rationally designed and reported the first evidence and elucidationon biostimulant impacts of plant-self-derived nano-extracts from donor Arabidopsis thaliana as a model forinducing mirror biostimulant activities in conspecific host seeds,seedlings,and plants.Moreover,we assessed theeffect of donor plants'age on short,mid-,and long-term biocompatibility,growth,and development/maturationof the recipient plants for up to around 30 days.As a proof-of-concept,we found these autologous bio-extractscould effectively promote seed sprouting,seedling germination,and the development of soil-drenched plantsof the same types.Our transmission-electron microscopy characterization of root/shoot pieces shows the presenceof multiple phyto-compounds,including microtubules/actin filaments,cell vacuoles,Golgi stacks/endoplasmicreticulum,cell wall polysaccharide-based cellulose fibers,and organic amorphous nanoparticles and clusters ofcarbon quantum dots in the structure of these extracts.This personalized plant stimulation may induce furthergrowth/defense-related mechanisms,setting new paradigms toward reducing the agrochemical inputs.展开更多
Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response...Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response to pathogenic threats,plants have developed sophisticated defense mechanisms,such as pattern-triggered immunity(PTI)and effector-triggered immunity(ETI),which rely on specialized recognition systems such as pattern recognition receptors(PRRs)and nucleotide-binding leucine-rich repeat(NLR)proteins.These immune responses activate intricate signaling pathways involving mitogen-activated protein kinase cascades,calcium fluxes,reactive oxygen species production,and hormonal cross-talk among salicylic acid,jasmonic acid,and ethylene.Furthermore,structural barriers such as callose deposition and lignification,along with the synthesis of secondary metabolites and antimicrobial enzymes,play crucial roles in inhibiting pathogen invasion and proliferation.The plant microbiome further enhances host immunity through beneficial associations with plant growth-promoting rhizobacteria(PGPR)and mycorrhizal fungi,which facilitate induced systemic resistance(ISR)and improve nutrient acquisition.As climate change exacerbates the impact of pathogens,these molecular and microbiome-driven defenses influence disease distribution and plant resilience,highlighting the importance of integrating ecological insights for sustainable disease management Advancements in microbiome engineering,including the application of synthetic microbial communities and commercial bio-inoculants,offer promising strategies for sustainable disease management.However,the impacts of climate change on pathogen virulence,host susceptibility,and disease distribution complicate these interactions,emphasizing the need for resilient and adaptive agricultural practices.This review highlights the necessity of a holistic,interdisciplinary approach that integrates multi-omics technologies,microbiome research,and ecological insights to develop effective and sustainable solutions for managing plant diseases and ensuring global food security.展开更多
Observing plants across time and diverse scenes is critical in uncovering plant growth patterns.Classic methods often struggle to observe or measure plants against complex backgrounds and at different growth stages.Th...Observing plants across time and diverse scenes is critical in uncovering plant growth patterns.Classic methods often struggle to observe or measure plants against complex backgrounds and at different growth stages.This highlights the need for a universal approach capable of providing realistic plant visualizations across time and scene.Here,we introduce PlantGaussian,an approach for generating realistic three-dimensional(3D)visualization for plants across time and scenes.It marks one of the first applications of 3D Gaussian splatting techniques in plant science,achieving high-quality visualization across species and growth stages.By integrating the Segment Anything Model(SAM)and tracking algorithms,PlantGaussian overcomes the limitations of classic Gaussian reconstruction techniques in complex planting environments.A new mesh partitioning technique is employed to convert Gaussian rendering results into measurable plant meshes,offering a methodology for accurate 3D plant morphology phenotyping.To support this approach,PlantGaussian dataset is developed,which includes images of four crop species captured under multiple conditions and growth stages.Using only plant image sequences as input,it computes high-fidelity plant visualization models and 3D meshes for 3D plant morphological phenotyping.Visualization results indicate that most plant models achieve a Peak Signal-to-Noise Ratio(PSNR)exceeding 25,outperforming all models including the original 3D Gaussian Splatting and enhanced NeRF.The mesh results indicate an average relative error of 4%between the calculated values and the true measurements.As a generic 3D digital plant model,PlantGaussian will support expansion of plant phenotype databases,ecological research,and remote expert consultations.展开更多
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo...Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
GAME15, a scaffold protein, orchestrates the biosynthesis of steroidal glycoalkaloids (a class of compounds with known defensive properties) and steroidal saponins (which contribute to plant defense) in Solanaceae pla...GAME15, a scaffold protein, orchestrates the biosynthesis of steroidal glycoalkaloids (a class of compounds with known defensive properties) and steroidal saponins (which contribute to plant defense) in Solanaceae plants, essential for their defense mechanisms. By assembling key enzymes at the endoplasmic reticulum, GAME15 ensures efficient metabolite production, preventing toxic intermediate diffusion. This breakthrough in plant defense biosynthesis opens opportunities for metabolic engineering, enabling the production of valuable metabolites in non-native hosts and offering potential strategies for crop protection, reducing the need for chemical pesticides.展开更多
Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area a...Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area and porous structure.It works by attracting and binding HM ions to its surface.Okoubaka is known for its medicinal properties and some studies suggest it has detoxifying effects.However,its specific role in HM removal would likely involve binding mechanisms like other plant-based materials.This study examines the efficiency of activated charcoal,charred versus uncharred Okoubaka plant materials,eggshells and oxalic acid to remove HMs like copper,lead,and zinc from contaminated water.展开更多
Insect herbivory is ubiquitous in various ecosystems,and directly influences the growth and survival of individual plants,especially during their vulnerable early life stages like the seedling phase.This,in turn,exert...Insect herbivory is ubiquitous in various ecosystems,and directly influences the growth and survival of individual plants,especially during their vulnerable early life stages like the seedling phase.This,in turn,exerts a significant influence on forest community diversity and structure,as well as ecosystem function and stability.Notable variation in herbivory has been detected both among and within plant species.For decades,many hypotheses have been proposed to explain such variations,including both biotic and abiotic variables.However,most studies have considered only one or several of these hypotheses by focusing on a few potential variables,and their results were usually inconsistent;thus,the factors driving herbivory remain unclear.In this study,we examined leaf herbivory by insects of woody species seedlings in a subtropical forest in southwestern China over two seasons.In total,24 potential variables that represented abiotic resource availability,characters of individual seedlings,conspecific and heterospecific species,and the whole seedling community were selected to test several commonly discussed alternative herbivory hypotheses.Overall,our findings showed that the plant apparency hypothesis was more supported than the other hypotheses in explaining insect seedling herbivory.Our results further indicated that the mechanisms and causes of insect herbivory are complex,multifactorial,species-specific and vary with seasons,indicating that there may be no uniform rules in explaining herbivory for all seedlings.Consequently,such complexity may play an important role in promoting species coexistence and biodiversity maintenance in seedling communities,which may further translate into the following generation of saplings or even adult communities.Changes in the community of insect herbivores and/or variables influencing insect herbivory,may disrupt stability of the original seedling community,thus affecting the regeneration and development of the entire forest community.Therefore,we suggest that issues related to insect herbivory should be considered when developing forest management and conservation.展开更多
Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research...Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research on the impact of the interaction between protist and PGPR on plant performance remains at a very early stage.Here,we examined the impacts of individual inoculation of protist(Colpoda inflata,Dimastigella trypaniformis,or Vermamoeba vermiformis)or the PGPR strain Bacillus velezensis SQR9 as well as the co-inoculation of the protist C.inflata and B.velezensis SQR9 on the growth of tomato plants.We found that all individual protists and Bacillus could promote plant growth compared to the control with no microbe inoculation,with the co-inoculation of C.inflata and B.velezensis SQR9 achieving the greatest performance,including plant height,fresh weight,and dry weight.Different protists harbored distinct rhizosphere bacterial communities,with the co-inoculation of protist and Bacillus resulting in the lowest bacterial diversity and driving significant changes in community structure and composition,particularly by increasing the relative abundance of Proteobacteria.Random forest model highlighted Cellvibrio as the most important bacterial predictor of plant growth,which was enriched after protist inoculation,especially after the mixed inoculation of protist and Bacillus.We further found that bacterial functional genes of nitrogen metabolism were the key determinants of plant growth.These results indicate that the interaction between protists and Bacillus can support plant growth by reshaping rhizosphere bacterial community composition and function.Understanding the interaction mechanisms between protist and PGPR is crucial for their effective utilization in sustainable agriculture.展开更多
Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due t...Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.展开更多
Journal Introduction"International Journal of Plant Engineering and Management"is in the charge of Ministry of Industry and Information Technology of the People's Republic of China,and organized by North...Journal Introduction"International Journal of Plant Engineering and Management"is in the charge of Ministry of Industry and Information Technology of the People's Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly publication publicly issued at home and abroad.Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the application technology of equipment and industry management.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.31660568)Guangxi Science and Technology major project(Grant No.GuikeAA22068088)+2 种基金start-up funding for introduced talents in Guangxi University,the Guangxi Colleges and Universities Young and Middle-aged Teachers'Basic Scientific Research Ability Improvement Project(Grant No.2024KY0010)Guangxi Graduate Education Innovation Program(Grant No.YCSW2024093)the Guangxi University Student Innovation and Entrepreneurship Training Program Funding Project(Grant Nos.202310593704,202310593714,202410953044S).
文摘N6-methyladenosine(m^(6)A)modification,the most abundant internal modification in messenger RNA(mRNA)and long non-coding RNA(lncRNA),has emerged as a critical epitranscriptomic regulatory mechanism in eukaryotes.While the importance of m^(6)A modification in various biological processes has been recognized,a comprehensive understanding of its diverse roles in plant biology and agricultural applications remains fragmented.This review analyzes recent advances inm^(6)A modification's biological functions in plants.m^(6)A modification plays crucial roles in multiple aspects of plant life,including seed germination,organ development,and reproductive structure formation.Furthermore,m^(6)A has been found to significantly influence plant responses to environmental stresses,including salt,drought,temperature,and heavy metal exposure.We also uncover m^(6)A involvement in important agricultural traits.This review provides insights into the mechanistic understanding of m^(6)A modification in plants and highlights its applications in agricultural improvement,offering a foundation for future research in crop enhancement and stress resistance.
文摘For decades,Xu has been committed to fulfilling the duty and mission of a scientist and educator—diving into the laws of nature,caring deeply for the nation,and earnestly cultivating younger generations.
基金supported by the National Key Research and Development Program of China(No.2024YFD1701101)the Fund for Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28010503)+2 种基金the National Natural Science Foundation of China(No.31971515)the Fund for National Key Research and Development Plan of China(No.2019YFC1804100)the Fund for Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(No.CAAS-ZDRW202110).
文摘Atrazine,a persistent triazine herbicide,poses environmental and health risks.This study examines the synergis-tic remediation of atrazine-contaminated soil using green manure plant(GMP)hairy vetch(Vicia villosa Roth,VV)and the exogenous atrazine-degrading bacterium Arthrobacter sp.ATR1.Soil samples contaminated with atrazine at 5 and 20 mg/kg were treated with control(CK),ATR1(CKatr),hairy vetch(VV),and combined hairy vetch and ATR1 remediation(VVatr).The results indicated that the VVatr treatment exhibited the most effective atrazine removal,achieving enhancements of 56.12%at 5 mg/kg and 54.51%at 20 mg/kg compared to CK after 28 days.Soil enzyme activities,including urease,sucrase,and alkaline phosphatase,were significantly elevated in the VV and VVatr treatments,contributing to improved soil quality.Additionally,the CKatr,VV,and VVatr treat-ments enhanced bacterial diversity and richness while altering the microbial community structure.The VV and VVatr treatments notably enriched indigenous atrazine-degrading bacteria and nitrogen-fixing bacteria in the rhizosphere.This microbial enrichment upregulated the Atrazine degradation and Nitrogen metabolism pathways,facilitating both atrazine removal and nitrogen cycling in the soil.And VVatr treatment promoted the stability of the microbial network and enhanced the cooperative relationship between key indigenous atrazine-degrading and nitrogen-fixing bacteria.These findings explain the mechanism of plantmicrobe combined remediation of atrazine-contaminated soil from the perspective of rhizosphere microorganisms and offer a theoretical basis for the practical application of this method.
基金the Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia(RCEECA),the construction and joint research for the China-Tajikistan“Belt and Road”Joint Laboratory on Biodiversity Conservation and Sustainable Use(2024YFE0214200)the Shanghai Cooperation Organization Partnership and International Technology Cooperation Plan of Science and Technology Projects(2023E01018,2025E01056)the Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2024VBC0006).
文摘Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)grant number 525793193Prof.Stefan Eimer and Ms.Marion Basoglu at Goethe University for their assistance in TEM characterization+1 种基金Mr.Holger Schranz for his help in plant cultivation and maintenanceProf.Bruno M.Moerschbacher from the Institute of Plant Biology and Biotechnology at the Münster University。
文摘Conventional agrochemical plant biostimulants have been used to increase crop yield and stress resistance,andthis strategy continues to be integral to today's farming.While effective,the large-scale implantations of theseproducts are not without environmental,ecological,and cost concerns and the associated climate-change challenges.To alleviate this long-standing pressure on agriculture,designing and developing more biocompatible andsustainable plant stimulants are among the primary focuses of agricultural management.Over the recent decades,the field has witnessed significant progress in emerging naturally derived or nature-inspired nano-biostimulantswith large-active-surface areas,including bio-compounds,biopolymers,and nanocarbons.However,the extraction/preparation of these products may apply additional costs or require specific equipment.More recently,thefield's attention has shifted to the sustainable application of chemical-additive-free biostimulants towards practicalapplications in nano-agriculture.Herein,we rationally designed and reported the first evidence and elucidationon biostimulant impacts of plant-self-derived nano-extracts from donor Arabidopsis thaliana as a model forinducing mirror biostimulant activities in conspecific host seeds,seedlings,and plants.Moreover,we assessed theeffect of donor plants'age on short,mid-,and long-term biocompatibility,growth,and development/maturationof the recipient plants for up to around 30 days.As a proof-of-concept,we found these autologous bio-extractscould effectively promote seed sprouting,seedling germination,and the development of soil-drenched plantsof the same types.Our transmission-electron microscopy characterization of root/shoot pieces shows the presenceof multiple phyto-compounds,including microtubules/actin filaments,cell vacuoles,Golgi stacks/endoplasmicreticulum,cell wall polysaccharide-based cellulose fibers,and organic amorphous nanoparticles and clusters ofcarbon quantum dots in the structure of these extracts.This personalized plant stimulation may induce furthergrowth/defense-related mechanisms,setting new paradigms toward reducing the agrochemical inputs.
文摘Plant-pathogen interactions involve complex biological processes that operate across molecular,cellular,microbiome,and ecological levels,significantly influencing plant health and agricultural productivity.In response to pathogenic threats,plants have developed sophisticated defense mechanisms,such as pattern-triggered immunity(PTI)and effector-triggered immunity(ETI),which rely on specialized recognition systems such as pattern recognition receptors(PRRs)and nucleotide-binding leucine-rich repeat(NLR)proteins.These immune responses activate intricate signaling pathways involving mitogen-activated protein kinase cascades,calcium fluxes,reactive oxygen species production,and hormonal cross-talk among salicylic acid,jasmonic acid,and ethylene.Furthermore,structural barriers such as callose deposition and lignification,along with the synthesis of secondary metabolites and antimicrobial enzymes,play crucial roles in inhibiting pathogen invasion and proliferation.The plant microbiome further enhances host immunity through beneficial associations with plant growth-promoting rhizobacteria(PGPR)and mycorrhizal fungi,which facilitate induced systemic resistance(ISR)and improve nutrient acquisition.As climate change exacerbates the impact of pathogens,these molecular and microbiome-driven defenses influence disease distribution and plant resilience,highlighting the importance of integrating ecological insights for sustainable disease management Advancements in microbiome engineering,including the application of synthetic microbial communities and commercial bio-inoculants,offer promising strategies for sustainable disease management.However,the impacts of climate change on pathogen virulence,host susceptibility,and disease distribution complicate these interactions,emphasizing the need for resilient and adaptive agricultural practices.This review highlights the necessity of a holistic,interdisciplinary approach that integrates multi-omics technologies,microbiome research,and ecological insights to develop effective and sustainable solutions for managing plant diseases and ensuring global food security.
基金supported by the Central Government’s Guidance Fund for Local Science and Technology Development(2024ZY-CGZY-19)。
文摘Observing plants across time and diverse scenes is critical in uncovering plant growth patterns.Classic methods often struggle to observe or measure plants against complex backgrounds and at different growth stages.This highlights the need for a universal approach capable of providing realistic plant visualizations across time and scene.Here,we introduce PlantGaussian,an approach for generating realistic three-dimensional(3D)visualization for plants across time and scenes.It marks one of the first applications of 3D Gaussian splatting techniques in plant science,achieving high-quality visualization across species and growth stages.By integrating the Segment Anything Model(SAM)and tracking algorithms,PlantGaussian overcomes the limitations of classic Gaussian reconstruction techniques in complex planting environments.A new mesh partitioning technique is employed to convert Gaussian rendering results into measurable plant meshes,offering a methodology for accurate 3D plant morphology phenotyping.To support this approach,PlantGaussian dataset is developed,which includes images of four crop species captured under multiple conditions and growth stages.Using only plant image sequences as input,it computes high-fidelity plant visualization models and 3D meshes for 3D plant morphological phenotyping.Visualization results indicate that most plant models achieve a Peak Signal-to-Noise Ratio(PSNR)exceeding 25,outperforming all models including the original 3D Gaussian Splatting and enhanced NeRF.The mesh results indicate an average relative error of 4%between the calculated values and the true measurements.As a generic 3D digital plant model,PlantGaussian will support expansion of plant phenotype databases,ecological research,and remote expert consultations.
基金funded by the National Natural Science Foundation of China(Nos.22374055,22022404,22074050,82172055)the National Natural Science Foundation of Hubei Province(No.22022CFA033)the Fundamental Research Funds for the Central Universities(Nos.CCNU24JCPT001,CCNU24JCPT020)。
文摘Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
基金supported by the National Natural Science Foundation of China(31971314)the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization(SKLTOF20210122).
文摘GAME15, a scaffold protein, orchestrates the biosynthesis of steroidal glycoalkaloids (a class of compounds with known defensive properties) and steroidal saponins (which contribute to plant defense) in Solanaceae plants, essential for their defense mechanisms. By assembling key enzymes at the endoplasmic reticulum, GAME15 ensures efficient metabolite production, preventing toxic intermediate diffusion. This breakthrough in plant defense biosynthesis opens opportunities for metabolic engineering, enabling the production of valuable metabolites in non-native hosts and offering potential strategies for crop protection, reducing the need for chemical pesticides.
基金The Sherman Fairchild Foundation Undergraduate Research GrantThe National Science Foundation Award#1912400:HBCU-UP Implementation Project:Improving Minority Participation and Completion through STEM at Dillard University(IMPACTS@DU Ⅱ)Dillard University Endowed Professorship,funds。
文摘Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area and porous structure.It works by attracting and binding HM ions to its surface.Okoubaka is known for its medicinal properties and some studies suggest it has detoxifying effects.However,its specific role in HM removal would likely involve binding mechanisms like other plant-based materials.This study examines the efficiency of activated charcoal,charred versus uncharred Okoubaka plant materials,eggshells and oxalic acid to remove HMs like copper,lead,and zinc from contaminated water.
基金supported by the National Natural Science Foundation of China(Nos.32171533 and 31971444)Anhui Provincial Natural Science Foundation(No.2208085J28)。
文摘Insect herbivory is ubiquitous in various ecosystems,and directly influences the growth and survival of individual plants,especially during their vulnerable early life stages like the seedling phase.This,in turn,exerts a significant influence on forest community diversity and structure,as well as ecosystem function and stability.Notable variation in herbivory has been detected both among and within plant species.For decades,many hypotheses have been proposed to explain such variations,including both biotic and abiotic variables.However,most studies have considered only one or several of these hypotheses by focusing on a few potential variables,and their results were usually inconsistent;thus,the factors driving herbivory remain unclear.In this study,we examined leaf herbivory by insects of woody species seedlings in a subtropical forest in southwestern China over two seasons.In total,24 potential variables that represented abiotic resource availability,characters of individual seedlings,conspecific and heterospecific species,and the whole seedling community were selected to test several commonly discussed alternative herbivory hypotheses.Overall,our findings showed that the plant apparency hypothesis was more supported than the other hypotheses in explaining insect seedling herbivory.Our results further indicated that the mechanisms and causes of insect herbivory are complex,multifactorial,species-specific and vary with seasons,indicating that there may be no uniform rules in explaining herbivory for all seedlings.Consequently,such complexity may play an important role in promoting species coexistence and biodiversity maintenance in seedling communities,which may further translate into the following generation of saplings or even adult communities.Changes in the community of insect herbivores and/or variables influencing insect herbivory,may disrupt stability of the original seedling community,thus affecting the regeneration and development of the entire forest community.Therefore,we suggest that issues related to insect herbivory should be considered when developing forest management and conservation.
基金supported by the National Natural Science Foundation of China(Nos.42377296 and 42107141)the National Key Research and Development Program of China(Nos.2023YFD1901402 and 2023YFD1901105)the Fundamental Research Funds for the Central Universities,China(No.YDZX2025046).
文摘Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research on the impact of the interaction between protist and PGPR on plant performance remains at a very early stage.Here,we examined the impacts of individual inoculation of protist(Colpoda inflata,Dimastigella trypaniformis,or Vermamoeba vermiformis)or the PGPR strain Bacillus velezensis SQR9 as well as the co-inoculation of the protist C.inflata and B.velezensis SQR9 on the growth of tomato plants.We found that all individual protists and Bacillus could promote plant growth compared to the control with no microbe inoculation,with the co-inoculation of C.inflata and B.velezensis SQR9 achieving the greatest performance,including plant height,fresh weight,and dry weight.Different protists harbored distinct rhizosphere bacterial communities,with the co-inoculation of protist and Bacillus resulting in the lowest bacterial diversity and driving significant changes in community structure and composition,particularly by increasing the relative abundance of Proteobacteria.Random forest model highlighted Cellvibrio as the most important bacterial predictor of plant growth,which was enriched after protist inoculation,especially after the mixed inoculation of protist and Bacillus.We further found that bacterial functional genes of nitrogen metabolism were the key determinants of plant growth.These results indicate that the interaction between protists and Bacillus can support plant growth by reshaping rhizosphere bacterial community composition and function.Understanding the interaction mechanisms between protist and PGPR is crucial for their effective utilization in sustainable agriculture.
基金This work was supported by the National Key Research and Development Program of China(2021YFE0107100)Guangxi Key Research and Development Program(GuikeAB22035004)Guangxi Science and Technology Base and Talent Special Project(Guike AD20297090).
文摘Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.
文摘Journal Introduction"International Journal of Plant Engineering and Management"is in the charge of Ministry of Industry and Information Technology of the People's Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly publication publicly issued at home and abroad.Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the application technology of equipment and industry management.