Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the ...Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.展开更多
A polymer blends containing thermoplastic polyurethane(TPU) and poly(lactic acid)(PLA) as a biomedical material were prepared by a process of modifying thermally induced phase separation(MTIPS) and melt blendi...A polymer blends containing thermoplastic polyurethane(TPU) and poly(lactic acid)(PLA) as a biomedical material were prepared by a process of modifying thermally induced phase separation(MTIPS) and melt blending.The influences of composition,shear frequency,and temperature on the rheological behaviors of the blends were investigated by small amplitude oscillatory shear rheology.The results revealed that the addition of TPU into PLA significantly decreased the non-Newtonian index of the blends,and increased the sensitivity of the blends on shear rate,suggesting that optimization of the shear rate and temperature could improve the flowability of the blend melts in the extrusion process.In addition,the results of SEM images revealed that TPU distributed well into PLA matrix and showed good compatibility between the TPU and PLA,which made the blends with good toughness.The primary cytocompatibility of the blends was evaluated using C2C12 cells.The results suggested that the TPU/PLA blends did not affect cell growth,showing no cytotoxicity.In short,the TPU/PLA blends with excellent toughness had potential application as biomedical devices.展开更多
文摘Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2012CB933600)the National Natural Science Foundation of China(Nos.81271705 and 83171383)the Major Program of Natural Science Foundation of Shanghai,China(No.12JC1416302)
文摘A polymer blends containing thermoplastic polyurethane(TPU) and poly(lactic acid)(PLA) as a biomedical material were prepared by a process of modifying thermally induced phase separation(MTIPS) and melt blending.The influences of composition,shear frequency,and temperature on the rheological behaviors of the blends were investigated by small amplitude oscillatory shear rheology.The results revealed that the addition of TPU into PLA significantly decreased the non-Newtonian index of the blends,and increased the sensitivity of the blends on shear rate,suggesting that optimization of the shear rate and temperature could improve the flowability of the blend melts in the extrusion process.In addition,the results of SEM images revealed that TPU distributed well into PLA matrix and showed good compatibility between the TPU and PLA,which made the blends with good toughness.The primary cytocompatibility of the blends was evaluated using C2C12 cells.The results suggested that the TPU/PLA blends did not affect cell growth,showing no cytotoxicity.In short,the TPU/PLA blends with excellent toughness had potential application as biomedical devices.