目的:观察黄芪甲苷(AS-IV)通过调控蛋白激酶D1(PKD1)-组蛋白脱乙酰酶5(HDAC5)-血管内皮生长因子(VEGF)信号通路促心肌梗死大鼠血管新生的作用并分析其可能的作用机制。方法:采用经典的左冠状动脉前降支结扎术复制心肌梗死模型后,将大鼠...目的:观察黄芪甲苷(AS-IV)通过调控蛋白激酶D1(PKD1)-组蛋白脱乙酰酶5(HDAC5)-血管内皮生长因子(VEGF)信号通路促心肌梗死大鼠血管新生的作用并分析其可能的作用机制。方法:采用经典的左冠状动脉前降支结扎术复制心肌梗死模型后,将大鼠分成模型组、AS-IV治疗组和AS-IV+CID755673(PKD1阻断剂)组,另设假手术对照组和二甲基亚砜(DMSO)对照组,均采用尾静脉注射的给药方式。4周后处死大鼠,应用HE染色和Masson染色分析左心室心肌组织病理学变化;应用RT-PCR分析心肌组织中PKD1、HDAC5和VEGF m RNA的表达;免疫组化及Western blot法分析心肌组织中PKD1、VEGF及HDAC5蛋白的表达。结果:组织病理学分析表明,假手术组和DMSO组大鼠心肌组织形态正常,而模型组大鼠心肌组织形态紊乱,心肌细胞坏死和纤维化明显;AS-IV治疗后,心肌组织形态改善明显,且新生的血管数量明显增多;AS-IV+CID755673处理后大鼠心肌组织形态再次趋向紊乱,坏死细胞增多,部分血管闭合。模型组心肌组织中PKD1、HDAC5和VEGF的m RNA和蛋白表达明显低于假手术组和DMSO组(P<0.05),而AS-IV组显著高于模型组(P<0.01),AS-IV+CID755673组明显低于AS-IV组(P<0.05)。结论:AS-IV可部分通过调控PKD1-HDAC5-VEGF信号通路发挥促大鼠心肌梗死后心肌组织血管新生的作用。展开更多
许多脊椎动物外观虽然对称,但内部器官存在左右(left and right,L-R)不对称。内脏器官模式复杂且始终保持高度准确,一般认为这是由胚胎发育过程中纤毛定向摆动产生的结流体流动引起的[1]。L-R不对称可导致完全位反转或位模糊,也称异位...许多脊椎动物外观虽然对称,但内部器官存在左右(left and right,L-R)不对称。内脏器官模式复杂且始终保持高度准确,一般认为这是由胚胎发育过程中纤毛定向摆动产生的结流体流动引起的[1]。L-R不对称可导致完全位反转或位模糊,也称异位综合征(heterotaxy syndrome,HS),即至少有一个器官的正常位置被干扰[2-3]。HS是非常罕见的先天性疾病,该疾病的特征是沿着L-R轴的胸腔和腹部器官的正常排列紊乱,并常与复杂的先天性心脏病有关。展开更多
文摘目的:观察黄芪甲苷(AS-IV)通过调控蛋白激酶D1(PKD1)-组蛋白脱乙酰酶5(HDAC5)-血管内皮生长因子(VEGF)信号通路促心肌梗死大鼠血管新生的作用并分析其可能的作用机制。方法:采用经典的左冠状动脉前降支结扎术复制心肌梗死模型后,将大鼠分成模型组、AS-IV治疗组和AS-IV+CID755673(PKD1阻断剂)组,另设假手术对照组和二甲基亚砜(DMSO)对照组,均采用尾静脉注射的给药方式。4周后处死大鼠,应用HE染色和Masson染色分析左心室心肌组织病理学变化;应用RT-PCR分析心肌组织中PKD1、HDAC5和VEGF m RNA的表达;免疫组化及Western blot法分析心肌组织中PKD1、VEGF及HDAC5蛋白的表达。结果:组织病理学分析表明,假手术组和DMSO组大鼠心肌组织形态正常,而模型组大鼠心肌组织形态紊乱,心肌细胞坏死和纤维化明显;AS-IV治疗后,心肌组织形态改善明显,且新生的血管数量明显增多;AS-IV+CID755673处理后大鼠心肌组织形态再次趋向紊乱,坏死细胞增多,部分血管闭合。模型组心肌组织中PKD1、HDAC5和VEGF的m RNA和蛋白表达明显低于假手术组和DMSO组(P<0.05),而AS-IV组显著高于模型组(P<0.01),AS-IV+CID755673组明显低于AS-IV组(P<0.05)。结论:AS-IV可部分通过调控PKD1-HDAC5-VEGF信号通路发挥促大鼠心肌梗死后心肌组织血管新生的作用。
文摘许多脊椎动物外观虽然对称,但内部器官存在左右(left and right,L-R)不对称。内脏器官模式复杂且始终保持高度准确,一般认为这是由胚胎发育过程中纤毛定向摆动产生的结流体流动引起的[1]。L-R不对称可导致完全位反转或位模糊,也称异位综合征(heterotaxy syndrome,HS),即至少有一个器官的正常位置被干扰[2-3]。HS是非常罕见的先天性疾病,该疾病的特征是沿着L-R轴的胸腔和腹部器官的正常排列紊乱,并常与复杂的先天性心脏病有关。