A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services thr...This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.展开更多
Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a...Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a rectangle at the bottom and a semicircle at the top before the collapse of the pipe roof, rather than a rectangular or circular cross-section.A shear stress-based erosion rate formula was utilized, and the arched pipe tunnel was assumed to enlarge along its length and width until the overlying soil could no longer maintain stability.Orifice flow and open channel flow were adopted to calculate the breach flow discharge for pressure and free surface flows, respectively.The collapse of the pipe roof was determined by comparing the weight of the overlying soil and the cohesion of the soil on the two sidewalls of the pipe.After the collapse, overtopping failure dominated, and the limit equilibrium method was adopted to estimate the stability of the breach slope when the water flow overtopped.In addition, incomplete and base erosion, as well as one-and two-sided breaches were taken into account.The USDAARS-HERU model test P1, with detailed measured data, was used as a case study, and two artificially filled earthen dam failure cases were studied to verify the model.Feedback analysis demonstrates that the proposed model can provide satisfactory results for modeling the breach flow discharge and breach development process.Sensitivity analysis shows that the soil erodibility and initial piping position significantly affect the prediction of the breach flow discharge.Furthermore, a comparison with a well-known numerical model shows that the proposed model performs better than the NWS BREACH model.展开更多
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic...Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.展开更多
With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the erod...With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear.In this study,we developed a Hele-Shaw cell to visualize the dynamic progression of BEP.With imaging process technology,we obtained a typical process of BEP(the erosion process can be divided into a piping progression phase and a piping stabilization phase),quantitatively characterized the formation of erosion pipes,and compared the patterns of erosion(e.g.,the erosion area A and the maximum erosion radius R)that spontaneously develop under different fluxes of water.The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge,which is possibly due to the granular system in a thicker model having more degrees of freedom,reducing the stability of the sand grains.展开更多
Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to...Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.展开更多
An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied t...An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.展开更多
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load...Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.展开更多
The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was con...The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.展开更多
This study investigates the risks of non-conservative piping design according to ASME B31.1 for hightemperature piping subjected to long-term operation at high temperature in a creep regime based on a sensitivity anal...This study investigates the risks of non-conservative piping design according to ASME B31.1 for hightemperature piping subjected to long-term operation at high temperature in a creep regime based on a sensitivity analysis of the hold time. Design evaluations of hightemperature piping were conducted over a range of hold times in the creep regime according to ASME B31.1,which implicitly considers the creep effects, and the French high-temperature design code of the RCC-MRx, which explicitly considers the creep effects. Conservatisms were quantified among the codes in terms of the hold times. In the case of B31.1, the design evaluation results do not change depending on the hold time at high temperature,whereas in the case of RCC-MRx, they do. It was shown that the design limits of RCC-MRx were exceeded when the hold time exceeded certain values, whereas those of B31.1 were satisfied regardless of the hold times. Thus, the design evaluations according to B31.1 did not consistently yield conservative results and might lead to non-conservative results in the case of long-term operations in the creep range.展开更多
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITO...Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.展开更多
According to the nuclear safety regulations, this paper discusses the mechanical analysis method for piping system. Peps program has advantages of stress analysis and evaluation for nuclear piping. First, this paper i...According to the nuclear safety regulations, this paper discusses the mechanical analysis method for piping system. Peps program has advantages of stress analysis and evaluation for nuclear piping. First, this paper introduces the Peps software, and discusses the process of stress analysis and evaluation for nuclear piping using the general finite element software;Secondly, taking nuclear class 2/3 piping system as an example, it uses Peps4.0 program to calculate the piping stress in variety of working conditions, such as weight, pressure, thermal expansion, earthquake, time-history force, and etc. Finally, the paper calculates the maximum stress and stress ratio according to the ASME.展开更多
In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures ...In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures using Design-By-Analysis are first reviewed in detail. Thereafter, a so-called simplified elastic-plastic discontinuity analysis for further verification when the basic requirements found unsatisfactory is examined and discussed. In addition, necessary computational procedures for evaluating alternating stress intensities and cumulative damage factors are studied in detail. The authors' emphasis is placed on alternative verification procedures, which do not violate the general design principles upon which the code is built, for further verification if unsatisfactory results are found in the simplified elastic-plastic analysis. An alternative which employs a non-linear finite element computation and a refined numerical approach for re-evaluating the cumulative damage factors is suggested. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis through the penalty factor Ke and other simplifications.展开更多
Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be ...Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.展开更多
It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displac...It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displacement, low speed, as well as an appropriate locking speed.Inside the damper, a plunger-type accumulator was installed and on the outside of the piston rod, a tube with exposed corrugations was added.Between the piston and the cylinder, a clearance seal was added.Using mathematical modeling, the effects of the dynamic performance of the damper's impact displacement on vibrations were observed.Changes to the clearance between the piston and the cylinder, the stiffness of the spring in the accumulator, the throttle valve size, and locking speed resistance of the damper were respectively simulated and studied.Based on the results of the simulation, dampers with optimal parameters were developed and tested with different accumulator spring stiffnesses and different throttles.The simulation and experimental results showed that parameters such as seal clearance between piston and cylinder, accumulator spring stiffness and throttle parameters have significant effects on the damper's impact displacement, low speed resistance and locking speed.展开更多
Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of c...Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of constraints(TOC) concept is introduced to solve the scheduling problems of piping factory,and an intelligent scheduling system is developed.The system integrates a product model,an operation model,a factory model and a knowledge database of piping production and can make the process planning and production scheduling automatically.In the paper,details of above points are discussed.Moreover,an application of the system in a piping factory,which achieves a higher level of performance as measured by tardiness,lead time and inventory,is demonstrated at the end of the paper.展开更多
In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies ty...In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies typical of seismic excitations. The finite element analysis with the nonlinear kinematic hardening model has been used to evaluate ratcheting behavior of the piping elbows under mentioned loading condition. Material parameters have been obtained from several stabilized cycles of specimens that are subjected to symmetric strain cycles. The direction of maximum strain is at about 45° between the hoop and axial directions. The results show that the direction of highest ratcheting is along the hoop direction rather than the direction of maximum principal strain. Also, the initial rate of ratcheting is large and then it decreases with the increasing cycles. Also, the FE method gives over estimated values compared with the experimental data.展开更多
Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code,Section III,NB-3600,which is often discussed in connection to power uprate and life-extension of aging reactors in...Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code,Section III,NB-3600,which is often discussed in connection to power uprate and life-extension of aging reactors in recent years,is dealt with.Key parameters involved in the fatigue verification,e.g.,the alternating stress intensity Salt,the penalty factor Ke and the cumulative damage factor U,and relevant computational procedures applicable for the assessment of low-cycle fatigue failure using strain-controlled data,are particularly addressed.A so-called simplified elastic-plastic discontinuity analysis for alternative verification when fatigue requirements found unsatisfactory,and the procedures provided in NB-3600 for evaluating the alternating stress intensity S,j,,are reviewed in detail.An in-depth discussion is given to alternative procedures suggested earlier by the authors using nonlinear finite element analyses,which uses a nonlinear finite element analysis for directly determining the alternating stress,thus eliminating uncertainties resulted from the use of the penalty factor Ke.Using this alternative,unavoidable plastic strains can be correctly taken into account in a computationally affordable way,and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis.展开更多
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
文摘This paper aims to evaluate the feasibility of pressure-dependent models in the design of ship piping systems.For this purpose,a complex ship piping system is designed to operate in firefighting and bilge services through jet pumps.The system is solved as pressure-dependent model by the piping system analysis software EPANET and by a mathematical approach involving a piping network model.This results in a functional system that guarantees the recommendable ranges of hydraulic state variables(flow and pressure)and compliance with the rules of ship classification societies.Through this research,the suitability and viability of pressure-dependent models in the simulation of a ship piping system are proven.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0404805)the National Natural Science Foundation of China(Grants No.51779153 and 51539006)+1 种基金the Central Public-interest Scientific Institution Basal Research Fund(Grant No.Y717012)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161121)
文摘Based on model tests of earthen dam breach due to piping failure, a numerical model was developed.A key difference from previous research is the assumption that the cross-section of the pipe channel is an arch, with a rectangle at the bottom and a semicircle at the top before the collapse of the pipe roof, rather than a rectangular or circular cross-section.A shear stress-based erosion rate formula was utilized, and the arched pipe tunnel was assumed to enlarge along its length and width until the overlying soil could no longer maintain stability.Orifice flow and open channel flow were adopted to calculate the breach flow discharge for pressure and free surface flows, respectively.The collapse of the pipe roof was determined by comparing the weight of the overlying soil and the cohesion of the soil on the two sidewalls of the pipe.After the collapse, overtopping failure dominated, and the limit equilibrium method was adopted to estimate the stability of the breach slope when the water flow overtopped.In addition, incomplete and base erosion, as well as one-and two-sided breaches were taken into account.The USDAARS-HERU model test P1, with detailed measured data, was used as a case study, and two artificially filled earthen dam failure cases were studied to verify the model.Feedback analysis demonstrates that the proposed model can provide satisfactory results for modeling the breach flow discharge and breach development process.Sensitivity analysis shows that the soil erodibility and initial piping position significantly affect the prediction of the breach flow discharge.Furthermore, a comparison with a well-known numerical model shows that the proposed model performs better than the NWS BREACH model.
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.
文摘Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.
基金the National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit(No.2021GY01)the National Natural Science Foundation of China(No.41630641)。
文摘With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear.In this study,we developed a Hele-Shaw cell to visualize the dynamic progression of BEP.With imaging process technology,we obtained a typical process of BEP(the erosion process can be divided into a piping progression phase and a piping stabilization phase),quantitatively characterized the formation of erosion pipes,and compared the patterns of erosion(e.g.,the erosion area A and the maximum erosion radius R)that spontaneously develop under different fluxes of water.The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge,which is possibly due to the granular system in a thicker model having more degrees of freedom,reducing the stability of the sand grains.
基金Foundation item: Project(2011BAB09B01) supported by the National Science and Technology Support Program of China Project(cstc2013jcyjA30006) supported by Chongqing Science & Technology Commission, China Project(K J130412) supported by Chongqing Education Commission, China
文摘Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.
基金support from the South China University of Technology for the PhD short-term visiting project。
文摘An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.
基金financially supported by Offshore Engineering Equipment Scientific Research Project--Topic on Subsea Production System DesignKey Equipment Research & Development from Ministry of Industry and Information Technology of the People's Republic of China E-0813C003
文摘Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.
基金supported by the 973 Program of China(Grant No.2012CB417005)the Postgraduate Research and Innovation Plan Project in Jiangsu Province(Grant No.CXZZ13_0243)
文摘The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.
基金supported by National Research Foundation Grants(NRF-2012M2A8A2025635 and NRF-2017K1A3A7A03086464)funded by the Korean Government(Ministry of Science,ICT and Future Planning)
文摘This study investigates the risks of non-conservative piping design according to ASME B31.1 for hightemperature piping subjected to long-term operation at high temperature in a creep regime based on a sensitivity analysis of the hold time. Design evaluations of hightemperature piping were conducted over a range of hold times in the creep regime according to ASME B31.1,which implicitly considers the creep effects, and the French high-temperature design code of the RCC-MRx, which explicitly considers the creep effects. Conservatisms were quantified among the codes in terms of the hold times. In the case of B31.1, the design evaluation results do not change depending on the hold time at high temperature,whereas in the case of RCC-MRx, they do. It was shown that the design limits of RCC-MRx were exceeded when the hold time exceeded certain values, whereas those of B31.1 were satisfied regardless of the hold times. Thus, the design evaluations according to B31.1 did not consistently yield conservative results and might lead to non-conservative results in the case of long-term operations in the creep range.
文摘Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
文摘According to the nuclear safety regulations, this paper discusses the mechanical analysis method for piping system. Peps program has advantages of stress analysis and evaluation for nuclear piping. First, this paper introduces the Peps software, and discusses the process of stress analysis and evaluation for nuclear piping using the general finite element software;Secondly, taking nuclear class 2/3 piping system as an example, it uses Peps4.0 program to calculate the piping stress in variety of working conditions, such as weight, pressure, thermal expansion, earthquake, time-history force, and etc. Finally, the paper calculates the maximum stress and stress ratio according to the ASME.
文摘In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures using Design-By-Analysis are first reviewed in detail. Thereafter, a so-called simplified elastic-plastic discontinuity analysis for further verification when the basic requirements found unsatisfactory is examined and discussed. In addition, necessary computational procedures for evaluating alternating stress intensities and cumulative damage factors are studied in detail. The authors' emphasis is placed on alternative verification procedures, which do not violate the general design principles upon which the code is built, for further verification if unsatisfactory results are found in the simplified elastic-plastic analysis. An alternative which employs a non-linear finite element computation and a refined numerical approach for re-evaluating the cumulative damage factors is suggested. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis through the penalty factor Ke and other simplifications.
文摘Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.
基金Supported by the National Natural Science Foundation of China under Grant No.10972086
文摘It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displacement, low speed, as well as an appropriate locking speed.Inside the damper, a plunger-type accumulator was installed and on the outside of the piston rod, a tube with exposed corrugations was added.Between the piston and the cylinder, a clearance seal was added.Using mathematical modeling, the effects of the dynamic performance of the damper's impact displacement on vibrations were observed.Changes to the clearance between the piston and the cylinder, the stiffness of the spring in the accumulator, the throttle valve size, and locking speed resistance of the damper were respectively simulated and studied.Based on the results of the simulation, dampers with optimal parameters were developed and tested with different accumulator spring stiffnesses and different throttles.The simulation and experimental results showed that parameters such as seal clearance between piston and cylinder, accumulator spring stiffness and throttle parameters have significant effects on the damper's impact displacement, low speed resistance and locking speed.
文摘Manufacturing of ship piping system is one of the major production activities in shipbuilding.The schedule of pipe production has an important impact on master schedule of shipbuilding.In this research,the theory of constraints(TOC) concept is introduced to solve the scheduling problems of piping factory,and an intelligent scheduling system is developed.The system integrates a product model,an operation model,a factory model and a knowledge database of piping production and can make the process planning and production scheduling automatically.In the paper,details of above points are discussed.Moreover,an application of the system in a piping factory,which achieves a higher level of performance as measured by tardiness,lead time and inventory,is demonstrated at the end of the paper.
文摘In this paper the ratcheting behavior of four pairs of stainless steel elbows is studied under conditions of steady internal pressure and dynamic conditions that induced out-of-plane external moments at frequencies typical of seismic excitations. The finite element analysis with the nonlinear kinematic hardening model has been used to evaluate ratcheting behavior of the piping elbows under mentioned loading condition. Material parameters have been obtained from several stabilized cycles of specimens that are subjected to symmetric strain cycles. The direction of maximum strain is at about 45° between the hoop and axial directions. The results show that the direction of highest ratcheting is along the hoop direction rather than the direction of maximum principal strain. Also, the initial rate of ratcheting is large and then it decreases with the increasing cycles. Also, the FE method gives over estimated values compared with the experimental data.
文摘Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code,Section III,NB-3600,which is often discussed in connection to power uprate and life-extension of aging reactors in recent years,is dealt with.Key parameters involved in the fatigue verification,e.g.,the alternating stress intensity Salt,the penalty factor Ke and the cumulative damage factor U,and relevant computational procedures applicable for the assessment of low-cycle fatigue failure using strain-controlled data,are particularly addressed.A so-called simplified elastic-plastic discontinuity analysis for alternative verification when fatigue requirements found unsatisfactory,and the procedures provided in NB-3600 for evaluating the alternating stress intensity S,j,,are reviewed in detail.An in-depth discussion is given to alternative procedures suggested earlier by the authors using nonlinear finite element analyses,which uses a nonlinear finite element analysis for directly determining the alternating stress,thus eliminating uncertainties resulted from the use of the penalty factor Ke.Using this alternative,unavoidable plastic strains can be correctly taken into account in a computationally affordable way,and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis.