This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
A metallurgical model for austenite coarsening in the coarse-grained heat-affected zone(CGHAZ)containing titanium nitride(TiN)precipitation was studied.Unlike traditional methods estimating pinning capability based on...A metallurgical model for austenite coarsening in the coarse-grained heat-affected zone(CGHAZ)containing titanium nitride(TiN)precipitation was studied.Unlike traditional methods estimating pinning capability based on the precipitation size after welding,a proposed dissolution and coarsening model was applied to study the changes in TiN precipitation size and the associated pinning forces.The transmission electron microscope was used to analyze the size distribution of TiN particles before and after the welding thermal cycle.The size distribution showed a log-normal distribution before the thermal cycle.The prediction of post-thermal cycle size distributions with the proposed model was in agreement with the experimental results.Considering the short holding time at high temperature during welding,the thermodynamic stability conditions required for limiting grain size model cannot be achieved.A simple kinetic model for the prediction of austenite grain size in CGHAZ was established.Finally,the predicted austenite grain sizes agree better with experimental results than the conventional approach.展开更多
In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ...In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.展开更多
The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned n...The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.展开更多
Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants ha...Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the...The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.展开更多
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the contro...This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.展开更多
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also...In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.展开更多
In this article, the notion of pinning control for directed networks of dynamical systems is introduced, where the nodes could be either single-input single-output (SISO) or multi-input multi-output (MIMO) dynamic...In this article, the notion of pinning control for directed networks of dynamical systems is introduced, where the nodes could be either single-input single-output (SISO) or multi-input multi-output (MIMO) dynamical systems, and could be non-identical and nonlinear in general but will be specified to be identical linear time-invariant (LTI) systems here in the study of network controllability. Both state and structural controllability problems will be discussed, illustrating how the network topology, node-system dynamics, external control inputs and inner dynamical interactions altogether affect the controllability of a general complex network of LTI systems, with necessary and sufficient conditions presented for both SISO and MIMO settings. To that end, the controllability of a special temporally switching directed network of linear time-varying (LTV) node systems will be addressed, leaving some more general networks and challenging issues to the end for research outlook.展开更多
We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization rel...We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.展开更多
Semiconductors are a major category of functional materials essential to various applications to sustain the modern society.Most applied materials or devices utilizing semiconductors are enabled by interfaces or junct...Semiconductors are a major category of functional materials essential to various applications to sustain the modern society.Most applied materials or devices utilizing semiconductors are enabled by interfaces or junctions,such as solar cells,electronic/photonic devices,environmental sensors,and redox hetero-catalysts.Herein,the author provides a critical commentary on photoemission measurement of the work function and,more importantly,the electron affinity of semiconductors essential for energy band diagram of heterojunctions.Particular effort is made towards addressing complications associated with Fermi level pinning due to surficial states of doped semiconductors.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of t...The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped networks. Numerical simulations on some non-regular complex networks generated by the Barabasi-Albert model and various star-shaped networks are performed for verification and illustration.展开更多
A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striki...A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.展开更多
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-age...In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.展开更多
Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated ...Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.展开更多
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchro...In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.展开更多
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(U21A20116).
文摘A metallurgical model for austenite coarsening in the coarse-grained heat-affected zone(CGHAZ)containing titanium nitride(TiN)precipitation was studied.Unlike traditional methods estimating pinning capability based on the precipitation size after welding,a proposed dissolution and coarsening model was applied to study the changes in TiN precipitation size and the associated pinning forces.The transmission electron microscope was used to analyze the size distribution of TiN particles before and after the welding thermal cycle.The size distribution showed a log-normal distribution before the thermal cycle.The prediction of post-thermal cycle size distributions with the proposed model was in agreement with the experimental results.Considering the short holding time at high temperature during welding,the thermodynamic stability conditions required for limiting grain size model cannot be achieved.A simple kinetic model for the prediction of austenite grain size in CGHAZ was established.Finally,the predicted austenite grain sizes agree better with experimental results than the conventional approach.
文摘In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.
基金the National Natural Science Foundation of China (No.60774088, 60504017)the Specialized Research Fund for theDoctoral Program of Higher Education of China (No.20050055013)the Program for New Century Excellent Talents of China (NCET)
文摘The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.
基金supported Australian Research Council (Nos. DP0559872 and DP0881739)
文摘Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金supported by National Natural Science Foundation of China(No.61273008)Science Research Project of Liaoning Provicial Education Department(No.L2012208)Science Foundation of Ministry of Housing and Urban-Rural Development(No.2013-K5-2)
文摘The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.
基金supported by the National Natural Science Foundation of China (Grant No 10647001)the Guangxi Natural Science Foundation (Grant No 0728042)+1 种基金the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No RC2007006)the NSFC-HK Joint Research Scheme (Grant No N-CityU107/07)
文摘This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
基金supported by the National Natural Science Foundation of China under Grant No. 60874088 and No. 11072059the Scientific Research Fund of Yunnan Province under Grant No. 2010ZC150the Scientific Research Fund of Yunnan Provincial Education Department under Grant No. 07Y10085
文摘In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.
文摘In this article, the notion of pinning control for directed networks of dynamical systems is introduced, where the nodes could be either single-input single-output (SISO) or multi-input multi-output (MIMO) dynamical systems, and could be non-identical and nonlinear in general but will be specified to be identical linear time-invariant (LTI) systems here in the study of network controllability. Both state and structural controllability problems will be discussed, illustrating how the network topology, node-system dynamics, external control inputs and inner dynamical interactions altogether affect the controllability of a general complex network of LTI systems, with necessary and sufficient conditions presented for both SISO and MIMO settings. To that end, the controllability of a special temporally switching directed network of linear time-varying (LTV) node systems will be addressed, leaving some more general networks and challenging issues to the end for research outlook.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51402292 and 51677179the International Partnership Program of the Chinese Academy of Sciences under Grant Nos GJHZ1775 and 182111KYSB20160014+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No NoQYZDJ-SSW-JSC026the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB25000000
文摘We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.
文摘Semiconductors are a major category of functional materials essential to various applications to sustain the modern society.Most applied materials or devices utilizing semiconductors are enabled by interfaces or junctions,such as solar cells,electronic/photonic devices,environmental sensors,and redox hetero-catalysts.Herein,the author provides a critical commentary on photoemission measurement of the work function and,more importantly,the electron affinity of semiconductors essential for energy band diagram of heterojunctions.Particular effort is made towards addressing complications associated with Fermi level pinning due to surficial states of doped semiconductors.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674093)the Foundation for Key Program of Ministry of Education,China (Grant No 107110)
文摘The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped networks. Numerical simulations on some non-regular complex networks generated by the Barabasi-Albert model and various star-shaped networks are performed for verification and illustration.
基金supported by Shanghai Rising-Star Program (No. 11QH1401000)the National Natural Science Foundation of China (No. 50932003)+1 种基金the Key Project of Chinese Ministry of Education (No. 211055)Shanghai Research Special Fund for Outstanding Young Teachers (No. sdl10009)
文摘A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant Nos. 2009BA2024, cstc2011jjA40045, and cstc2013jcyjA0906)the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, China (Grant No. 2007DA10512711206)
文摘In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.
基金the National Key R&D Program of China (Project No. 2017YFB0703001)the National Natural Science Foundation of China (Nos. 51371147, 51101121, 51125002, 51134011, 51771153 and 51431008)+2 种基金the Research Fund of the State Key Lab. of Solidification Processing (NWPU) (No. 146-QZ2016)the Fundamental Research Funds for the Central Universities (No. 3102017jc03008)the Shaanxi Young Stars of Science and Technology (No. 2016KJXX-44) for financial supports
文摘Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.
基金Supported by National Natural Science Foundation of China under Grant No.61201227National Natural Science Foundation of China Guangdong Joint Fund under Grant No.U1201255+2 种基金the Natural Science Foundation of Anhui Province under Grant No.1208085MF93211 Innovation Team of Anhui University under Grant Nos.KJTD007A and KJTD001Bsupported by Chinese Scholarship Council
文摘In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.