Understanding why elements are distributed in tree xylem in a particular way is a significant challenge in dendrochemistry.This study explored a hypothesis that metal elements in the xylem interact due to differences ...Understanding why elements are distributed in tree xylem in a particular way is a significant challenge in dendrochemistry.This study explored a hypothesis that metal elements in the xylem interact due to differences in physical properties such as ionic radius and ionization potential.Scots pine in an even-aged stand established during the early 1970s in eastern Siberia was the study species.Increment cores were taken from the north and south sides of trees and scanned with an X-ray fluorescent multi scanner.With the help of X-ray scanning,the following elements were analyzed:aluminum(Al),potassium(K),calcium(Ca),titanium(Ti),manganese(Mn),iron(Fe),copper(Cu),strontium(Sr)and zinc(Zn).Scanning data on the elements were split into early-wood and late-wood data for each year of growth.The following ratios were analyzed:Ca/Sr,Fe/Ca,Fe/Sr,Al/Cu,Al/Zn,Ti/Mn,and Mn/K.Among these,ones having a consistent pattern across tree rings,the ratios show a more or less dependable relationship:that an element shows a larger decrease(relative another element)that has a larger ionic radius and lower ionization potential.Hypothetically,this may be due to the advantage of an ion with smaller ionic radius and higher ionization potential under a deficit of accommodation centers in organic molecules.An experiment approach should be applied to clarify the relationships.展开更多
The effectiveness of fluopyram suspension concentrate against pine wilt disease(PWD)is limited by spraying efficiency and water dependence.A traditional dust formulation with strong dispersibility can overcome these s...The effectiveness of fluopyram suspension concentrate against pine wilt disease(PWD)is limited by spraying efficiency and water dependence.A traditional dust formulation with strong dispersibility can overcome these shortcomings.However,its efficacy against PWD remains uncertain.This study evaluated the translocation of fluopyram dust within tree tissues,soil and water degradation,and its effective control against PWD.Nursery tests showed effective prevention;field tests showed dust absorption and translocation into pine tissues.Thirty days following application,residual concentrations in soil were low at 0.09 mg kg^(−1);no detectable residues were found in water samples.Three years after applying fluopyram,its effectiveness increased to approximately 87%.Based on this study,fluopyram had a half-life of 346 d with persistence lasting up to three years.This provides valuable insight for managing PWD through dust applications.展开更多
A growing recognition that uneven-aged silviculture can offer multiple benefits to forested ecosystems has encouraged some landowners in the southern region of the United States to convert even-aged pine stands into m...A growing recognition that uneven-aged silviculture can offer multiple benefits to forested ecosystems has encouraged some landowners in the southern region of the United States to convert even-aged pine stands into multi-aged stands.For shade-intolerant pines of the southern United States,however,few studies have examined residual tree growth following silvicultural treatments that convert even-aged stands to multi-aged stands.Understanding the growth response of residual trees to different kinds of stand conversion treatments is critical to stand development and sustainability,as trees must be recruited into larger size classes during the conversion process to develop the desired stand structure and maintain productivity.In this study,we utilized a replicated,long-term silvicultural experimental trial in the southeastern United States to assess the effects of two cutting treatments(dispersed"single tree cutting"that created small canopy gaps and the"patch cutting"that created 0.1-0.8ha patch openings)and an uncut control on the 14-year growth(~cutting cycle length)of residual longleaf pine(Pinus palustris Mill.)trees.We found that tree growth,measured as mean basal area increment(BAI),was significantly higher following patch cutting(mean BAI of 16.97cm^(2))compared to both the single tree cutting(13.33cm^(2))and the uncut control(12.68cm^(2))(p<0.001).In patch cutting,the size of the patch opening,the location of trees surrounding the patch opening,and the position of the tree canopy all had a significant effect on BAI.Trees surrounding patch openings of 0.4ha exhibited greater growth,with a mean BAI of 19.24cm^(2),compared to those surrounding 0.1 and 0.8ha patch openings,which had mean BAI values of 15.89 and 15.71cm^(2),respectively(p<0.001).The position of a tree around the patch opening also influenced tree growth,as residual trees more to the North,South,and East sides exhibited significantly higher mean BAI than trees on the West side of the patch openings(p<0.001).However,distance from the patch opening border did not significantly affect the mean BAI(p=0.522).In all treatments,dominant and co-dominant trees exhibited higher BAI than intermediate and overtopped trees,indicating that tree canopy position significantly influenced tree growth(p<0.001).Understanding how residual trees grow after these silvicultural treatments is crucial for thoroughly assessing their efficacy with longleaf pine.This study's findings will enhance our understanding of stand dynamics during stand conversion and help land managers anticipate the growth of longleaf pine into larger size categories after single tree and patch cuttings.展开更多
Nitrogen and phosphorus (NP) deposition can change the nutrient input of forest ecosystems. The effects of NP deposition on soil aggregate need to be analyzed to propose effective environmental management strategies. ...Nitrogen and phosphorus (NP) deposition can change the nutrient input of forest ecosystems. The effects of NP deposition on soil aggregate need to be analyzed to propose effective environmental management strategies. In this study, representative Korean pine mixed forests and Korean pine plantations in northeastern China were selected. Soil samples were sieved to obtain four different particle sizes of soil aggregates (> 2, 2–0.25, 0.25–0.053, and < 0.053 mm). Four NP treatments were applied to simulate N and P deposition, and an indoor incubation experiment was conducted over a period of 360 d. Total nitrogen, microbial nitrogen, dissolved organic nitrogen, hydrolyzed nitrogen, NH_(4)^(+)–N, NO_(3)^(−)–N content, and extracellular enzyme activities of NAG, LAP, and AP were determined. Different fractions of N responded differently to NP addition. Lower NP addition had a greater promoting effect on aggregate N compared to higher NP addition. NAG was the main extracellular enzyme affecting N in both forest types. NP addition had a greater effect on the extracellular enzyme activities of the soil aggregates from the Korean pine plantations. These results enhance our understanding of the effects of NP addition on soil nitrogen within temperate forest ecosystems.展开更多
Forest management planning faces uncertainties regarding future timber prices,tree growth,and survival.Future seed production is an additional source of uncertainty in Korean pine stands managed for the joint producti...Forest management planning faces uncertainties regarding future timber prices,tree growth,and survival.Future seed production is an additional source of uncertainty in Korean pine stands managed for the joint production of timber and edible seeds.Modern forest planning uses optimisation to determine the best possible cutting schedule.Optimisation can accommodate uncertainty by using decision rules for adaptive forest management instead of optimising cutting years and intensities.In this study,we optimised two adaptive decision rules for managing Korean pine plantations for the joint production of timber and pinecones when timber prices,tree growth,and seed production are stochastic.The first rule indicated the minimum price to sell timber,i.e.,the reservation price,as a function of the mean tree diameter and stand basal area.The second adaptive rule expressed the mean tree diameter at which cutting is optimal as a function of timber price and stand basal area.Both decision rules resulted in nearly the same mean net present value when the optimised rule was applied to 100 stochastic scenarios for future timber prices,tree growth,and seed production.The net present values were over 20% higher than those for the deterministically optimised cutting schedules under the same scenarios.Therefore,the expected economic gain from switching from deterministic to adaptive stochastic optimisation was at least 20%.The cutting years of the adaptive optima were frequently later than those indicated by the deterministic optima,and optimal adaptive harvesting often involved waiting for high timber prices.The minimum price or minimum mean diameter to sell timber was higher when the income from seeds was considered in the optimisation.The cuttings were later,and the rotations were longer in the joint production of timber and pinecones than in timber production alone.展开更多
We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and...We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and forest structure.We compared 0.5-ha study plots subjected to selective removal of pine trees with control plots excluded from any kind of human intervention for half a century.The observed changes in forest floor vegetation in the converted plots showed naturalization towards habitat-specific species.However,differences in the spatial distribution of trees between the treatment and control plots showed no universal pattern and revealed subtle but positive shifts from regular to random or clustered patterns.The mean tree diameters were higher in plots subjected to Scots pine removal,which resulted from the vigorous growth of tree species,consistent with habitat types.We conclude that forest restoration through the removal of planted trees can support the naturalization of former Scots pine plantations in protected areas.However,the selection of an appropriate method and its intensity are of vital importance.Methods that resemble typical management practices,such as selection thinning,are not always the best approach,as they may preserve or even increase the regular distribution of trees.Therefore,for restoration purposes,we recommend testing other methods that increase spatial heterogeneity,including systematic cutting or emulating natural disturbances.In addition,low-intensity thinning may not be sufficient to support the restoration of natural forest floor vegetation and the variability in forest stand structure.展开更多
Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation ...Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.展开更多
Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatmen...Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatments(0,20,40,and 80 kg ha^(−1)a^(−1)N for 6 a)at a Korean pine plantation of different soil horizons(organic(O)horizon,ranging from 0 to 10 cm,and organomineral(A)horizon,extending from 10 to 20 cm)to evaluate responses of the structure of saprophytic fungal communities.Here,80 kg ha^(−1)a^(−1)N treatment significantly decreased the community richness in soil A horizon with the Chao1 index decreasing by 12.68%.Nitrogen addition induced changes in the composition of saprophytic fungi community between the different soil horizons.The co-occurrence network and its associated topological structure were utilized to identify mycoindicators for specific fungi to both soil horizons and nitrogen addition levels.In soil O horizon,the mycoindicators included Penicillium,Trichoderma,Aspergillus,and Pseudeurotium across control,low,medium,and high nitrogen treatments.In soil A horizon,Geomyces,Cladophialophora,Penicillium,and Pseudeurotium were identified as mycoindicators.Structural equation modeling determined NH_(4)^(+)-N as the key factor driving changes in saprotrophic fungal communities.Our study aimed to screen mycoindicators that can respond to the increasing global nitrogen deposition and to assess the roles of these mycoindicators in the saprophytic fun-gal community structure within Korean pine plantations in northeast China.展开更多
Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface ...Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models(DSMs)generated through an Unmanned Aerial Vehicle(UAV)mission.We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information.Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya,Turkey.A Hand-held Mobile Laser Scanner(HMLS)was utilized to collect the reference point cloud dataset.Our findings confirm that the proposed methodology,which uses a single DSM as an input,secures overall pixel-based and object-based F1-scores of 88.3%and 97.7%,respectively.The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm(less than 4 pixels),demonstrating the effectiveness and robustness of the proposed methodology.Finally,the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
In our previous screening of the transcriptome of the causal agent of the devastating pine wilt disease,pine wood nematode(PWN,Bursaphelenchus xylophilus),after treatment with the nematicide fomepizole,Surfeit locus g...In our previous screening of the transcriptome of the causal agent of the devastating pine wilt disease,pine wood nematode(PWN,Bursaphelenchus xylophilus),after treatment with the nematicide fomepizole,Surfeit locus gene sft-4,which encodes a regulatory factor,was found to be downregulated.In situ hybridization results showed that the sft-4 was continuously expressed from egg to adult and was especially high in the reproductive system.Here in a study of the effect of RNA interference(RNAi)of sft-4 and recombinant SFT-4 on PWN activity,treatment with sft-4 dsRNA inhibited feeding,reproduction,oviposition and egg hatching of PWN with the greatest inhibition on reproduction and oviposition,whereas recombinant SFT-4 had the opposite effect.In addition,RNAi of sft-4 changed the female–male ratio and lifespan of PWN.In bioassays of PWNs,with RNAi of sft-4 on seedlings and 2-year-old Pinus thunbergii trees,none of the treated plants developed symp-toms during the monitoring period,indicating that virulence of PWNs was either significantly weakened.These results indicate that the influence of sft-4 on PWN pathogenicity may be mainly through regulating reproductive function of PWN and its lifespan.展开更多
Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands i...Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.展开更多
The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg sou...The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.展开更多
Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classifi...Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.展开更多
Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face...Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face backgrounds which hinder their effectiveness in moni-toring.To address these challenges,based on the analysis and optimization of UAV remote sensing images,this study developed a spatio-temporal multi-scale fusion algorithm for disease detection.The multi-head,self-attention mechanism is incorporated to address the issue of excessive features generated by complex surface backgrounds in UAV images.This enables adaptive feature control to suppress redundant information and boost the model’s feature extraction capa-bilities.The SPD-Conv module was introduced to address the problem of loss of small target feature information dur-ing feature extraction,enhancing the preservation of key features.Additionally,the gather-and-distribute mechanism was implemented to augment the model’s multi-scale feature fusion capacity,preventing the loss of local details during fusion and enriching small target feature information.This study established a dataset of pine wood nematode disease in the Huangshan area using DJI(DJ-Innovations)UAVs.The results show that the accuracy of the proposed model with spatio-temporal multi-scale fusion reached 78.5%,6.6%higher than that of the benchmark model.Building upon the timeliness and flexibility of UAV remote sensing,the pro-posed model effectively addressed the challenges of detect-ing small and medium-size targets in complex backgrounds,thereby enhancing the detection efficiency for pine wood nematode disease.This facilitates early preemptive preser-vation of diseased trees,augments the overall monitoring proficiency of pine wood nematode diseases,and supplies technical aid for proficient monitoring.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
基金supported by the Russian Science Foundation(grant No.:23-44-00067).
文摘Understanding why elements are distributed in tree xylem in a particular way is a significant challenge in dendrochemistry.This study explored a hypothesis that metal elements in the xylem interact due to differences in physical properties such as ionic radius and ionization potential.Scots pine in an even-aged stand established during the early 1970s in eastern Siberia was the study species.Increment cores were taken from the north and south sides of trees and scanned with an X-ray fluorescent multi scanner.With the help of X-ray scanning,the following elements were analyzed:aluminum(Al),potassium(K),calcium(Ca),titanium(Ti),manganese(Mn),iron(Fe),copper(Cu),strontium(Sr)and zinc(Zn).Scanning data on the elements were split into early-wood and late-wood data for each year of growth.The following ratios were analyzed:Ca/Sr,Fe/Ca,Fe/Sr,Al/Cu,Al/Zn,Ti/Mn,and Mn/K.Among these,ones having a consistent pattern across tree rings,the ratios show a more or less dependable relationship:that an element shows a larger decrease(relative another element)that has a larger ionic radius and lower ionization potential.Hypothetically,this may be due to the advantage of an ion with smaller ionic radius and higher ionization potential under a deficit of accommodation centers in organic molecules.An experiment approach should be applied to clarify the relationships.
基金supported by grants from the National Key R&D Program of China(grant number 2021YFD1400900)the National Natural Science Foundation of China(grant numbers U1905201,32171805)+6 种基金the Forestry Key Program of Science and Technology in Fujian Province(grant number 2021FKJ03)the Natural Science Foundation of Fujian Province,China(grant number 2021J01056)the Forestry Programs of Science and Technology in Fujian Province[grant number Mincaizhi(2020)601]the Science and Technology Program of Fujian Province(grant number 2018N5002)the Forestry Science Research Project of Fujian Forestry Department[grant number Minlinke(2017)03]the National Major Emergency Science and Technology Program of China(grant number ZD202001)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(grant numbers 72202200205,71201800720).
文摘The effectiveness of fluopyram suspension concentrate against pine wilt disease(PWD)is limited by spraying efficiency and water dependence.A traditional dust formulation with strong dispersibility can overcome these shortcomings.However,its efficacy against PWD remains uncertain.This study evaluated the translocation of fluopyram dust within tree tissues,soil and water degradation,and its effective control against PWD.Nursery tests showed effective prevention;field tests showed dust absorption and translocation into pine tissues.Thirty days following application,residual concentrations in soil were low at 0.09 mg kg^(−1);no detectable residues were found in water samples.Three years after applying fluopyram,its effectiveness increased to approximately 87%.Based on this study,fluopyram had a half-life of 346 d with persistence lasting up to three years.This provides valuable insight for managing PWD through dust applications.
基金The USDA NIFA McIntire Stennis project#1014653 and the University of Florida Institute of Food and Agricultural Sciences funded the research presented in this publication.
文摘A growing recognition that uneven-aged silviculture can offer multiple benefits to forested ecosystems has encouraged some landowners in the southern region of the United States to convert even-aged pine stands into multi-aged stands.For shade-intolerant pines of the southern United States,however,few studies have examined residual tree growth following silvicultural treatments that convert even-aged stands to multi-aged stands.Understanding the growth response of residual trees to different kinds of stand conversion treatments is critical to stand development and sustainability,as trees must be recruited into larger size classes during the conversion process to develop the desired stand structure and maintain productivity.In this study,we utilized a replicated,long-term silvicultural experimental trial in the southeastern United States to assess the effects of two cutting treatments(dispersed"single tree cutting"that created small canopy gaps and the"patch cutting"that created 0.1-0.8ha patch openings)and an uncut control on the 14-year growth(~cutting cycle length)of residual longleaf pine(Pinus palustris Mill.)trees.We found that tree growth,measured as mean basal area increment(BAI),was significantly higher following patch cutting(mean BAI of 16.97cm^(2))compared to both the single tree cutting(13.33cm^(2))and the uncut control(12.68cm^(2))(p<0.001).In patch cutting,the size of the patch opening,the location of trees surrounding the patch opening,and the position of the tree canopy all had a significant effect on BAI.Trees surrounding patch openings of 0.4ha exhibited greater growth,with a mean BAI of 19.24cm^(2),compared to those surrounding 0.1 and 0.8ha patch openings,which had mean BAI values of 15.89 and 15.71cm^(2),respectively(p<0.001).The position of a tree around the patch opening also influenced tree growth,as residual trees more to the North,South,and East sides exhibited significantly higher mean BAI than trees on the West side of the patch openings(p<0.001).However,distance from the patch opening border did not significantly affect the mean BAI(p=0.522).In all treatments,dominant and co-dominant trees exhibited higher BAI than intermediate and overtopped trees,indicating that tree canopy position significantly influenced tree growth(p<0.001).Understanding how residual trees grow after these silvicultural treatments is crucial for thoroughly assessing their efficacy with longleaf pine.This study's findings will enhance our understanding of stand dynamics during stand conversion and help land managers anticipate the growth of longleaf pine into larger size categories after single tree and patch cuttings.
基金the Fundamental Research Funds for the Central Universities(Grant No.2572021DT04)the National Natural Science Foundation of China(Grant No.31770656).
文摘Nitrogen and phosphorus (NP) deposition can change the nutrient input of forest ecosystems. The effects of NP deposition on soil aggregate need to be analyzed to propose effective environmental management strategies. In this study, representative Korean pine mixed forests and Korean pine plantations in northeastern China were selected. Soil samples were sieved to obtain four different particle sizes of soil aggregates (> 2, 2–0.25, 0.25–0.053, and < 0.053 mm). Four NP treatments were applied to simulate N and P deposition, and an indoor incubation experiment was conducted over a period of 360 d. Total nitrogen, microbial nitrogen, dissolved organic nitrogen, hydrolyzed nitrogen, NH_(4)^(+)–N, NO_(3)^(−)–N content, and extracellular enzyme activities of NAG, LAP, and AP were determined. Different fractions of N responded differently to NP addition. Lower NP addition had a greater promoting effect on aggregate N compared to higher NP addition. NAG was the main extracellular enzyme affecting N in both forest types. NP addition had a greater effect on the extracellular enzyme activities of the soil aggregates from the Korean pine plantations. These results enhance our understanding of the effects of NP addition on soil nitrogen within temperate forest ecosystems.
基金funded by the Joint Funds for Regional Innovation and Development of the National Natural Science Foundation of China(No. U21A20244)the National Natural Science Foundation of China(No. 32071758)the National Key R&D Program of China (No.2022YFD2201000)
文摘Forest management planning faces uncertainties regarding future timber prices,tree growth,and survival.Future seed production is an additional source of uncertainty in Korean pine stands managed for the joint production of timber and edible seeds.Modern forest planning uses optimisation to determine the best possible cutting schedule.Optimisation can accommodate uncertainty by using decision rules for adaptive forest management instead of optimising cutting years and intensities.In this study,we optimised two adaptive decision rules for managing Korean pine plantations for the joint production of timber and pinecones when timber prices,tree growth,and seed production are stochastic.The first rule indicated the minimum price to sell timber,i.e.,the reservation price,as a function of the mean tree diameter and stand basal area.The second adaptive rule expressed the mean tree diameter at which cutting is optimal as a function of timber price and stand basal area.Both decision rules resulted in nearly the same mean net present value when the optimised rule was applied to 100 stochastic scenarios for future timber prices,tree growth,and seed production.The net present values were over 20% higher than those for the deterministically optimised cutting schedules under the same scenarios.Therefore,the expected economic gain from switching from deterministic to adaptive stochastic optimisation was at least 20%.The cutting years of the adaptive optima were frequently later than those indicated by the deterministic optima,and optimal adaptive harvesting often involved waiting for high timber prices.The minimum price or minimum mean diameter to sell timber was higher when the income from seeds was considered in the optimisation.The cuttings were later,and the rotations were longer in the joint production of timber and pinecones than in timber production alone.
基金financially supported by a grant from the Forest Fund of the Polish State Forests(Grant No.EZ.0290.1.16.2021).
文摘We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and forest structure.We compared 0.5-ha study plots subjected to selective removal of pine trees with control plots excluded from any kind of human intervention for half a century.The observed changes in forest floor vegetation in the converted plots showed naturalization towards habitat-specific species.However,differences in the spatial distribution of trees between the treatment and control plots showed no universal pattern and revealed subtle but positive shifts from regular to random or clustered patterns.The mean tree diameters were higher in plots subjected to Scots pine removal,which resulted from the vigorous growth of tree species,consistent with habitat types.We conclude that forest restoration through the removal of planted trees can support the naturalization of former Scots pine plantations in protected areas.However,the selection of an appropriate method and its intensity are of vital importance.Methods that resemble typical management practices,such as selection thinning,are not always the best approach,as they may preserve or even increase the regular distribution of trees.Therefore,for restoration purposes,we recommend testing other methods that increase spatial heterogeneity,including systematic cutting or emulating natural disturbances.In addition,low-intensity thinning may not be sufficient to support the restoration of natural forest floor vegetation and the variability in forest stand structure.
基金supported by Science and Technology Foundation Project of Ministry of Science and Technology of China(2012FY112000).
文摘Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.
基金funded by the National Natural Science Foundation of China(grant number:31971527,32001126)Heilongjiang Provincial Key Research and Development Plan Guidance Projects(grant number:GZ20210009)Natural Science Foundation of Heilongjiang Province(grant number:TD2019C002).
文摘Human activities contribute to elevated nitrogen input in terrestrial ecosystems,influencing the composition of soil nutrients and microbial diversity in forest ecosystems.In this study,we built four addition treatments(0,20,40,and 80 kg ha^(−1)a^(−1)N for 6 a)at a Korean pine plantation of different soil horizons(organic(O)horizon,ranging from 0 to 10 cm,and organomineral(A)horizon,extending from 10 to 20 cm)to evaluate responses of the structure of saprophytic fungal communities.Here,80 kg ha^(−1)a^(−1)N treatment significantly decreased the community richness in soil A horizon with the Chao1 index decreasing by 12.68%.Nitrogen addition induced changes in the composition of saprophytic fungi community between the different soil horizons.The co-occurrence network and its associated topological structure were utilized to identify mycoindicators for specific fungi to both soil horizons and nitrogen addition levels.In soil O horizon,the mycoindicators included Penicillium,Trichoderma,Aspergillus,and Pseudeurotium across control,low,medium,and high nitrogen treatments.In soil A horizon,Geomyces,Cladophialophora,Penicillium,and Pseudeurotium were identified as mycoindicators.Structural equation modeling determined NH_(4)^(+)-N as the key factor driving changes in saprotrophic fungal communities.Our study aimed to screen mycoindicators that can respond to the increasing global nitrogen deposition and to assess the roles of these mycoindicators in the saprophytic fun-gal community structure within Korean pine plantations in northeast China.
基金supported by the Projects of Scientific Investigation(BAP)of Ankara Haci Bayram Veli University[Grant No.01/2019-32].
文摘Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models(DSMs)generated through an Unmanned Aerial Vehicle(UAV)mission.We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information.Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya,Turkey.A Hand-held Mobile Laser Scanner(HMLS)was utilized to collect the reference point cloud dataset.Our findings confirm that the proposed methodology,which uses a single DSM as an input,secures overall pixel-based and object-based F1-scores of 88.3%and 97.7%,respectively.The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm(less than 4 pixels),demonstrating the effectiveness and robustness of the proposed methodology.Finally,the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.
基金supported by the Shandong Provincial Natural Science Foundation,China(ZR2020MC123)Qingdao Municipal People-benefitting Demonstration Project of Science and Technology,China(23-2-8-cspz-8-nsh).
文摘In our previous screening of the transcriptome of the causal agent of the devastating pine wilt disease,pine wood nematode(PWN,Bursaphelenchus xylophilus),after treatment with the nematicide fomepizole,Surfeit locus gene sft-4,which encodes a regulatory factor,was found to be downregulated.In situ hybridization results showed that the sft-4 was continuously expressed from egg to adult and was especially high in the reproductive system.Here in a study of the effect of RNA interference(RNAi)of sft-4 and recombinant SFT-4 on PWN activity,treatment with sft-4 dsRNA inhibited feeding,reproduction,oviposition and egg hatching of PWN with the greatest inhibition on reproduction and oviposition,whereas recombinant SFT-4 had the opposite effect.In addition,RNAi of sft-4 changed the female–male ratio and lifespan of PWN.In bioassays of PWNs,with RNAi of sft-4 on seedlings and 2-year-old Pinus thunbergii trees,none of the treated plants developed symp-toms during the monitoring period,indicating that virulence of PWNs was either significantly weakened.These results indicate that the influence of sft-4 on PWN pathogenicity may be mainly through regulating reproductive function of PWN and its lifespan.
基金funded by National Science Centre,Poland under the project"Assessment of the impact of weather conditions on forest health status and forest disturbances at regional and national scale based on the integration of ground and space-based remote sensing datasets"(project no.2021/41/B/ST10/)Data collection and research was also supported by the project no.EZ.271.3.19.2021"Modele ryzyka zamierania drzewostanow glownych gatunkow lasotworczych Polski"funded by the General Directorate of State Forests in Poland。
文摘Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.
基金supported by the Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxmX0063)the National Natural Science Foundation of China(No.41977272)。
文摘The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.
基金supported by Scientific Research Projects Management Coordinator of Kastamonu University,under grant number KÜ-BAP01/2019-41.
文摘Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.
基金funded by The National Natural Science Foundation of China(32271865)The Fundamental Research Funds for Central Universities(2572023CT16)the Fundamental Research Funds for Natural Science Foundation of Heilongjiang for Distinguished Young Scientists(JQ2023F002).
文摘Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face backgrounds which hinder their effectiveness in moni-toring.To address these challenges,based on the analysis and optimization of UAV remote sensing images,this study developed a spatio-temporal multi-scale fusion algorithm for disease detection.The multi-head,self-attention mechanism is incorporated to address the issue of excessive features generated by complex surface backgrounds in UAV images.This enables adaptive feature control to suppress redundant information and boost the model’s feature extraction capa-bilities.The SPD-Conv module was introduced to address the problem of loss of small target feature information dur-ing feature extraction,enhancing the preservation of key features.Additionally,the gather-and-distribute mechanism was implemented to augment the model’s multi-scale feature fusion capacity,preventing the loss of local details during fusion and enriching small target feature information.This study established a dataset of pine wood nematode disease in the Huangshan area using DJI(DJ-Innovations)UAVs.The results show that the accuracy of the proposed model with spatio-temporal multi-scale fusion reached 78.5%,6.6%higher than that of the benchmark model.Building upon the timeliness and flexibility of UAV remote sensing,the pro-posed model effectively addressed the challenges of detect-ing small and medium-size targets in complex backgrounds,thereby enhancing the detection efficiency for pine wood nematode disease.This facilitates early preemptive preser-vation of diseased trees,augments the overall monitoring proficiency of pine wood nematode diseases,and supplies technical aid for proficient monitoring.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.