The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-...The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-coordination) channel, and the acceleration of cross-over frequency was also limited by angular velocity limiter, so the false cues in flight simulation process were clearly perceived by pilots. The paper studied the characteristics of the classical washout algorithm and flight simulator motion platform, tried to redesign the source of cross-over acceleration channel and translation acceleration channel, and transferred the part of cross-over acceleration that was unsimulated sustained acceleration to translation acceleration channel. Comparisons were mainly made between classical washout algorithm and revised algorithm in a longitudinal/pitch direction. The evaluation was based on the implementation of human vestibular perception system. The results demonstrated that the revised algorithm could significantly reduce the phase lag, and improved the spikes tracking performance. Furthermore, sensory angular velocity and the error of sensory acceleration were strictly controlled within the threshold of human perception system, and the displacement was a little broader than the classical washout algorithm. Therefore, it was proved that the new algorithm could diminish the filters parameters and heighten the self-adaptability for the washout algorithm. In addition, the magnitude of false cues was remarkably reduced during flight simulator, and the workspace utilization of the motion platform was developed by "closed-loop" control system.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process w...Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.展开更多
This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, pr...This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.展开更多
针对开关磁阻电机PID(Proportional Integral Derivative)控制中存在的稳定性差、参数调节困难等问题,文中基于传统开关磁阻电机PID调速系统引入鲸鱼优化算法,将改进时间绝对误差函数作为适应度函数对K_(p)、K_(i)、K_(d)这3个控制参数...针对开关磁阻电机PID(Proportional Integral Derivative)控制中存在的稳定性差、参数调节困难等问题,文中基于传统开关磁阻电机PID调速系统引入鲸鱼优化算法,将改进时间绝对误差函数作为适应度函数对K_(p)、K_(i)、K_(d)这3个控制参数进行整定。在MATLAB/Simulink仿真平台搭建了三相6/4极开关磁阻电机的PID参数整定系统,分析了传统经验PID调参和算法整定参数的效果对比,并将鲸鱼算法的优化效果与粒子群算法、遗传算法和灰狼优化算法结果进行对比。仿真结果表明,所提方法获得的PID参数较精确,其效果优于3种对比算法。相比于经验法整定参数,鲸鱼算法整定参数响应速度提升了51.10%,误差减小了0.67%,使调速系统具有更快、更稳定的响应特性。展开更多
尽管比例−积分−微分(Proportional Integral Derivative,PID)控制算法被广泛应用在双电机差速小车控制当中,但是PID参数的整定过程一直是一个繁琐的过程。为了简化这一过程,文章基于双电机差速小车的传递函数模型,通过灰狼算法自动调节...尽管比例−积分−微分(Proportional Integral Derivative,PID)控制算法被广泛应用在双电机差速小车控制当中,但是PID参数的整定过程一直是一个繁琐的过程。为了简化这一过程,文章基于双电机差速小车的传递函数模型,通过灰狼算法自动调节PID控制器的参数。仿真展示了双电机差速小车的巡线结果,并对比了四种人工智能优化算法,进一步展示了灰狼算法(Grey Wolf Optimizer,GWO)在整定PID控制器参数时的有效性。展开更多
基金Supported by Wuhan Technical College of Communications Fund(Q2018001)China Institute of Communications Education Fund(1602-248)Wuhan Technical College of Communications Innovation Team(CX2018A07)
文摘The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-coordination) channel, and the acceleration of cross-over frequency was also limited by angular velocity limiter, so the false cues in flight simulation process were clearly perceived by pilots. The paper studied the characteristics of the classical washout algorithm and flight simulator motion platform, tried to redesign the source of cross-over acceleration channel and translation acceleration channel, and transferred the part of cross-over acceleration that was unsimulated sustained acceleration to translation acceleration channel. Comparisons were mainly made between classical washout algorithm and revised algorithm in a longitudinal/pitch direction. The evaluation was based on the implementation of human vestibular perception system. The results demonstrated that the revised algorithm could significantly reduce the phase lag, and improved the spikes tracking performance. Furthermore, sensory angular velocity and the error of sensory acceleration were strictly controlled within the threshold of human perception system, and the displacement was a little broader than the classical washout algorithm. Therefore, it was proved that the new algorithm could diminish the filters parameters and heighten the self-adaptability for the washout algorithm. In addition, the magnitude of false cues was remarkably reduced during flight simulator, and the workspace utilization of the motion platform was developed by "closed-loop" control system.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.
文摘This paper presents the automatic drug administration for the regulation of bispectral (BIS) index in the anesthesia process during the clinical surgery by controlling the concentration target of two drugs, namely, propofol and remifentanil. To realize the automatic drug administration, real clinical data are collected for 42 patients for the construction of patients’ models consisting of pharmacokinetic and pharmacodynamic models describing the dynamics reacting to the input drugs. A nominal anesthesia model is obtained by taking the average of 42 patients’ models for the design of control scheme. Three PID controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s model. The PID gains and membership functions are obtained using genetic algorithm (GA) by minimizing a cost function measuring the control performance. The best trained PID controllers are tested under different scenarios and compared in terms of control performance. Simulation results show that the IT2 fuzzy PID controller offers the best control strategy regulating the BIS index while the T1 fuzzy PID controller comes the second.
文摘针对开关磁阻电机PID(Proportional Integral Derivative)控制中存在的稳定性差、参数调节困难等问题,文中基于传统开关磁阻电机PID调速系统引入鲸鱼优化算法,将改进时间绝对误差函数作为适应度函数对K_(p)、K_(i)、K_(d)这3个控制参数进行整定。在MATLAB/Simulink仿真平台搭建了三相6/4极开关磁阻电机的PID参数整定系统,分析了传统经验PID调参和算法整定参数的效果对比,并将鲸鱼算法的优化效果与粒子群算法、遗传算法和灰狼优化算法结果进行对比。仿真结果表明,所提方法获得的PID参数较精确,其效果优于3种对比算法。相比于经验法整定参数,鲸鱼算法整定参数响应速度提升了51.10%,误差减小了0.67%,使调速系统具有更快、更稳定的响应特性。
文摘尽管比例−积分−微分(Proportional Integral Derivative,PID)控制算法被广泛应用在双电机差速小车控制当中,但是PID参数的整定过程一直是一个繁琐的过程。为了简化这一过程,文章基于双电机差速小车的传递函数模型,通过灰狼算法自动调节PID控制器的参数。仿真展示了双电机差速小车的巡线结果,并对比了四种人工智能优化算法,进一步展示了灰狼算法(Grey Wolf Optimizer,GWO)在整定PID控制器参数时的有效性。