The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consist...The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-int...Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-integral-derivative(PID) controller used for temperature contr ol is designed.And then it is applied in airpl ane cockpit temperature regulating system by adopting the way of cascade control.Experiment results indicate that the design scheme is reasonable and practical.展开更多
Conventional open-loop deep brain stimulation(DBS)systems with fixed parameters fail to accommodate interindividual pathological differences in Parkinson's disease(PD)management while potentially inducing adverse ...Conventional open-loop deep brain stimulation(DBS)systems with fixed parameters fail to accommodate interindividual pathological differences in Parkinson's disease(PD)management while potentially inducing adverse effects and causing excessive energy consumption.In this paper,we present an adaptive closed-loop framework integrating a Yogi-optimized proportional–integral–derivative neural network(Yogi-PIDNN)controller.The Yogi-augmented gradient adaptation mechanism accelerates the convergence of general PIDNN controllers in high-dimensional nonlinear control systems while reducing control energy usage.In addition,a system identification method establishes input–output dynamics for pre-training stimulation waveforms,bypassing real-time parameter-tuning constraints and thereby enhancing closed-loop adaptability.Finally,a theoretical analysis based on Lyapunov stability criteria establishes a sufficient condition for closed-loop stability within the identified model.Computational validations demonstrate that our approach restores thalamic relay reliability while reducing energy consumption by(81.0±0.7)%across multi-frequency tests.This study advances adaptive neuromodulation by synergizing data-driven pre-training with stability-guaranteed real-time control,offering a novel framework for energy-efficient and personalized Parkinson's therapy.展开更多
In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed i...In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.展开更多
The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concer...The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori...The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.展开更多
A boiler drum BDT921 that is installed in the Control Laboratory, Department of Mechatronics and Robotics Engineering, Faculty of Electric and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM) is be...A boiler drum BDT921 that is installed in the Control Laboratory, Department of Mechatronics and Robotics Engineering, Faculty of Electric and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM) is being used as a model plant to achieve the digital control system since its analog. Implementing a digital system to boiler quite a though work. This paper covers analysis from the experiment done to match with digital design that will be implemented to the real system. The digital control design will come up with the mathematical model and will be analyzed with MATLAB and SIMULINK software named as "Discrete Analysis ofBDT921 Simulation". A proportional integral and derivative (PID) controller is being chosen as the control element in discrete form as the real system is using the same control element. The output responses behave as the second order system with a bit difference in rise times and peak times compared with data obtained from experiment. With regarding to the analysis done, the digital control can be implemented and for further viewing, to be controlled digitally with computer in the control room.展开更多
文摘The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-integral-derivative(PID) controller used for temperature contr ol is designed.And then it is applied in airpl ane cockpit temperature regulating system by adopting the way of cascade control.Experiment results indicate that the design scheme is reasonable and practical.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372064 and 12172291)the Youth and Middle-Aged Science and Technology Development Program of Shanghai Institute of Technology(Grant No.ZQ2024-10)。
文摘Conventional open-loop deep brain stimulation(DBS)systems with fixed parameters fail to accommodate interindividual pathological differences in Parkinson's disease(PD)management while potentially inducing adverse effects and causing excessive energy consumption.In this paper,we present an adaptive closed-loop framework integrating a Yogi-optimized proportional–integral–derivative neural network(Yogi-PIDNN)controller.The Yogi-augmented gradient adaptation mechanism accelerates the convergence of general PIDNN controllers in high-dimensional nonlinear control systems while reducing control energy usage.In addition,a system identification method establishes input–output dynamics for pre-training stimulation waveforms,bypassing real-time parameter-tuning constraints and thereby enhancing closed-loop adaptability.Finally,a theoretical analysis based on Lyapunov stability criteria establishes a sufficient condition for closed-loop stability within the identified model.Computational validations demonstrate that our approach restores thalamic relay reliability while reducing energy consumption by(81.0±0.7)%across multi-frequency tests.This study advances adaptive neuromodulation by synergizing data-driven pre-training with stability-guaranteed real-time control,offering a novel framework for energy-efficient and personalized Parkinson's therapy.
文摘In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.
文摘The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金Supported by the National Natural Science Foundation of China(61573052,61174128)
文摘The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.
文摘A boiler drum BDT921 that is installed in the Control Laboratory, Department of Mechatronics and Robotics Engineering, Faculty of Electric and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM) is being used as a model plant to achieve the digital control system since its analog. Implementing a digital system to boiler quite a though work. This paper covers analysis from the experiment done to match with digital design that will be implemented to the real system. The digital control design will come up with the mathematical model and will be analyzed with MATLAB and SIMULINK software named as "Discrete Analysis ofBDT921 Simulation". A proportional integral and derivative (PID) controller is being chosen as the control element in discrete form as the real system is using the same control element. The output responses behave as the second order system with a bit difference in rise times and peak times compared with data obtained from experiment. With regarding to the analysis done, the digital control can be implemented and for further viewing, to be controlled digitally with computer in the control room.