Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and...Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and quantum photonics.The proposal of the pulley-type microring enhances the coupling strength,but also brings about issues such as mode mismatch and the excitation of higher-order modes.Here,a lithium niobate microring resonator coupled with a pulley bus waveguide based on modified Euler curves is proposed.This Euler-modified pulley bus minimizes mode mismatch at bending junctions,effectively suppressing higher-order mode excitation.The design achieves a high Q factor(exceeding 105)and strong coupling efficiency(83%)within a compact structure of 70μm radius.Due to its simple structure and ease of fabrication,the Euler-modified pulley-type microring holds practical value for applications requiring high-quality microring resonators.展开更多
A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, a...A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, and induced coupler plasma etching, the chip was fabricated in our laboratory. The test results show that the insertion loss is about -8 dB, and the crosstalk is less than -17 dB.展开更多
In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-...In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-band.Two separate EIOs are coupled through a specific single-gap coupling field supported by a designed gap waveguide with length Lg,which form the phase-locked EIOs based on the commonly-resonated system.As a whole system,the system has been focused on with mode analysis based on different single-gap coupling fields,mode hopping,which present the variation of phase difference between the two-beam-wave interactions when changing Lg.To demonstrate the effectiveness of the proposed circuit system in producing the phase locking,we conducted particle-in-cell(PIC)simulations to show that the interesting mode hopping occurs with the phase difference of O and r between the output signals from two output ports,corresponding to the excitation of the TMn mode with different n.Simulation results show that 1)the oscillator can deliver two times of the output power obtained from one single oscillator at 220 GHz,2)the two EIOs can still deliver output signals with phase difference of O and when the currents of the two beams are different or the fabrication errors of the two EIO cavities are taken into account.The proposed scheme is promising in extending to phase locking between multiple EIOs,and generating higher power at millimeter-wave and higher frequencies.展开更多
文摘为了评价PIC猪的胴体性状和肉质性状,试验屠宰了健康的PIC猪9头,测定了其胴体性状、肉质性状和肌肉成分等相关指标,并分析了各性状间的相关性。结果表明,宰前活重为123.78 kg的PIC猪,屠宰率为75.58%,瘦肉率为60.8%,平均背膘厚25.62 mm,眼肌面积45.95 cm 2,滴水损失2.14%,嫩度43.56N,肌内脂肪含量2.23%,总氨基酸含量20.3%,饱和脂肪酸含量41.54%,总不饱和脂肪酸含量58.44%。性状间相关性分析表明,PIC猪的宰前活重与屠宰率呈显著正相关(P<0.05),肌内脂肪与MUFA呈极显著正相关(P<0.01),与PUFA呈极显著负相关(P<0.01),与水分呈显著负相关(P<0.05)。肌内脂肪与水分间的相关系数为-0.718,二者间线性模型Y=-0.9985x+75.299,决定系数R^(2)为0.5153。
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB2808300)the National Natural Science Foundation of China(Grant Nos.62293523,62288101,62305156,92463304,92463308,12304421,and 12341403)+2 种基金Zhangjiang Laboratory(Grant No.ZJSP21A001)Program of Jiangsu Natural Science Foundation(Grant Nos.BK20230770 and BK20232033)Guangdong Major Project of Basic and Applied Basic Re-search(Grant No.2020B0301030009).
文摘Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and quantum photonics.The proposal of the pulley-type microring enhances the coupling strength,but also brings about issues such as mode mismatch and the excitation of higher-order modes.Here,a lithium niobate microring resonator coupled with a pulley bus waveguide based on modified Euler curves is proposed.This Euler-modified pulley bus minimizes mode mismatch at bending junctions,effectively suppressing higher-order mode excitation.The design achieves a high Q factor(exceeding 105)and strong coupling efficiency(83%)within a compact structure of 70μm radius.Due to its simple structure and ease of fabrication,the Euler-modified pulley-type microring holds practical value for applications requiring high-quality microring resonators.
基金supported by the National High Technology Research and Development Program of China(No.2011AA010303)the National Natural Science Foundation of China(Nos.61090390,60837001,60877014,60776057)
文摘A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, and induced coupler plasma etching, the chip was fabricated in our laboratory. The test results show that the insertion loss is about -8 dB, and the crosstalk is less than -17 dB.
基金Supported in part by the National Natural Science Foundation of China(62401125)the Natural Science Foundation of Sichuan Province(2023NSFSC1376)the Fundamental Research Funds for the Central Universities(ZYGX2024J008)。
文摘In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-band.Two separate EIOs are coupled through a specific single-gap coupling field supported by a designed gap waveguide with length Lg,which form the phase-locked EIOs based on the commonly-resonated system.As a whole system,the system has been focused on with mode analysis based on different single-gap coupling fields,mode hopping,which present the variation of phase difference between the two-beam-wave interactions when changing Lg.To demonstrate the effectiveness of the proposed circuit system in producing the phase locking,we conducted particle-in-cell(PIC)simulations to show that the interesting mode hopping occurs with the phase difference of O and r between the output signals from two output ports,corresponding to the excitation of the TMn mode with different n.Simulation results show that 1)the oscillator can deliver two times of the output power obtained from one single oscillator at 220 GHz,2)the two EIOs can still deliver output signals with phase difference of O and when the currents of the two beams are different or the fabrication errors of the two EIO cavities are taken into account.The proposed scheme is promising in extending to phase locking between multiple EIOs,and generating higher power at millimeter-wave and higher frequencies.