期刊文献+
共找到6,737篇文章
< 1 2 250 >
每页显示 20 50 100
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
1
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators Machine picking Yield improvement
在线阅读 下载PDF
Strength prediction and cuttability identification of rock based on monitoring while cutting(MWC)using a conical pick
2
作者 Shaofeng Wang Yumeng Wu +2 位作者 Xinlei Shi Xin Cai Zilong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1025-1043,共19页
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod... Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model. 展开更多
关键词 conical picks strength prediction cuttability identification machine learning monitoring while cutting
在线阅读 下载PDF
Water-induced changes in mechanical response and fragmentation behavior of rocks exposed to conical pick indentation:Implications for rock cuttability improvement
3
作者 Xin Cai Jifeng Yuan +5 位作者 Zilong Zhou Shaofeng Wang Yunming Wang Jixiong Zhang Dan Ma Lu Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5465-5478,共14页
Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ... Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations. 展开更多
关键词 Rock-cutting Water-weakening effects Conical pick Peak cutting force Specific energy Rock cuttability improvement
在线阅读 下载PDF
Intelligent phase picking of microseismic signals based on ResUNet in underground engineering
4
作者 OU Li-yuan HUANG Lin-qi +3 位作者 ZHAO Yun-ge WANG Zhao-wei SHEN Hui-ming LI Xi-bing 《Journal of Central South University》 2025年第9期3314-3335,共22页
With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stabi... With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stability assessment.To address problems in existing methods,such as low data processing efficiency and poor phase recognition accuracy under low signal-to-noise ratio(SNR)conditions in complex geological environments,this study proposes an intelligent phase picking model based on ResUNet.The model integrates the residual learning mechanism of ResNet with the multi-scale feature extraction capability of UNet,effectively mitigating the vanishing gradient problem in deep networks.It also achieves cross-layer fusion of shallow detail features and deep semantic features through skip connections in the encoder-decoder structure.Compared with traditional short-time average/long-time average(STA/LTA)algorithms and advanced neural network models such as PhaseNet and EQTransformer,ResUNet shows superior performance in picking P-and S-wave phases.The model was trained on 400000 labeled microseismic signals from the Stanford earthquake dataset(STEAD)and was successfully applied to the Shizhuyuan polymetallic mine in Hunan Province,China.The results demonstrate that ResUNet achieves high picking accuracy and robustness in complex geological conditions,offering reliable technical support for early warning of disasters such as rockburst in deep underground engineering. 展开更多
关键词 underground engineering microseismic monitoring phase picking deep learning ResUNet architecture rock fracture early warning
在线阅读 下载PDF
Applying deep learning to teleseismic phase detection and picking:PcP and PKiKP cases
5
作者 Congcong Yuan Jie Zhang 《Artificial Intelligence in Geosciences》 2025年第1期25-32,共8页
The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking ... The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis. 展开更多
关键词 Earth’s interior Teleseismic phases Phase detection Phase picking Deep learning
在线阅读 下载PDF
Perfect Pick系统订单拣选策略优化研究
6
作者 马云峰 邓力 余佳祥 《物流科技》 2024年第22期1-7,共7页
作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对... 作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对比分析;以货箱搬运次数最少为目标,分别构建订单分批与订单排序两种拣选策略的整数规划模型,并设计贪婪算法进行求解。通过数值实验验证,订单排序策略在所有订单规模中均优于订单分批策略,根据仓库的订单规模,合理设置拣选台最大容量并选择合理的拣选策略,能够更好地提高拣选效率、优化仓库作业环节。 展开更多
关键词 Perfect pick系统 订单拣选 订单分批 订单排序
在线阅读 下载PDF
Manual Order Picking Route Optimization in Distribution Warehouse of Chain Furniture Retail Enterprise
7
作者 Yongzhen Zeng Junkun Wang +1 位作者 Ching-Kuei Kao King-Zoo Tang 《American Journal of Operations Research》 2024年第3期105-136,共32页
Due to the effects of the COVID-19 pandemic and the rise of online shopping, the offline sales of IKEA Fuzhou have been declining since 2020. Because the cost of distribution warehouse is a major expense for offline c... Due to the effects of the COVID-19 pandemic and the rise of online shopping, the offline sales of IKEA Fuzhou have been declining since 2020. Because the cost of distribution warehouse is a major expense for offline chain furniture retailers, and the picking process is a key activity in distribution warehouse operations. To reduce the cost of distribution warehouse and alleviate the survival pressure of the offline chain furniture retailers, this paper focuses on optimizing the picking route of the IKEA Fuzhou distribution warehouse. It starts by creating a two-dimensional coordinate system for the storage location of the distribution warehouse using the traditional S-type picking strategy to calculate the distance and time of the sorting route. Then, the problem of optimizing the picking route is then transformed into the travelling salesman problem (TSP), and picking route optimization model is developed using a genetic algorithm to analyze the sorting efficiency and picking route optimization. Results show that the order-picking route using the genetic algorithm strategy is significantly better than the traditional S-type picking strategy, which can improve overall sorting efficiency and operations, reduce costs, and increase efficiency. Thus, this establishes an implementation process for the order-picking path based on genetic algorithm optimization to improve overall sorting efficiency and operations, reduce costs, increase efficiency, and alleviate the survival pressure of pandemic-affected enterprises. 展开更多
关键词 S-Shaped picking Strategy picking Route Traveling Salesman Problem Genetic Algorithm
在线阅读 下载PDF
Tea Image Recognition and Research on Structure of Tea Picking End-Effector
8
作者 Biao Huang Shiping Zou 《Journal of Electronics Cooling and Thermal Control》 2024年第3期51-60,共10页
The automated picking technology of tea is an important part of the development of smart agriculture, which affects the development of the tea industry to a certain extent. Tea leaf recognition and robotic tea picking... The automated picking technology of tea is an important part of the development of smart agriculture, which affects the development of the tea industry to a certain extent. Tea leaf recognition and robotic tea picking end-effector are the key technologies for automated tea picking. This paper proposes a set of algorithms for tea leaf differentiation and recognition based on the principle of colour difference. And on the basis of this algorithm, a tea picking end-effector is designed. The experiments show that the designed tea picking end-effector has good recognition ability and high tea picking speed. 展开更多
关键词 Image Recognition of Tea Leaves Tea picking End-Effector Tea pickingStructure Design
在线阅读 下载PDF
Automatic velocity picking based on optimal key points tracking algorithm 被引量:1
9
作者 Yong-Hao Wang Wen-Kai Lu +3 位作者 Song-Bai Jin Yang Li Yu-Xuan Li Xiao-Feng Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期903-917,共15页
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating... Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost. 展开更多
关键词 Velocity picking Multi-object tracking Density clustering Kalman filter
原文传递
Niemann-Pick C1蛋白在埃博拉病毒感染中的作用及其靶向药物研究进展 被引量:2
10
作者 吴海燕 陈国江 《中国药理学与毒理学杂志》 CAS 北大核心 2024年第2期153-160,共8页
埃博拉病毒属丝状病毒科,具有高传染性,能引起人类和灵长类动物出现严重出血热等症状,病死率高达90%。Niemann-Pick C1(NPC1)蛋白是埃博拉病毒感染过程中表达于宿主细胞内体膜上的一个重要受体,其与埃博拉病毒被组织蛋白酶裂解的糖蛋白(... 埃博拉病毒属丝状病毒科,具有高传染性,能引起人类和灵长类动物出现严重出血热等症状,病死率高达90%。Niemann-Pick C1(NPC1)蛋白是埃博拉病毒感染过程中表达于宿主细胞内体膜上的一个重要受体,其与埃博拉病毒被组织蛋白酶裂解的糖蛋白(GP)的相互作用是病毒感染宿主的关键环节,介导病毒囊膜与内体膜的融合,进而将病毒基因组释放到宿主细胞。近年来,将NPC1蛋白作为广谱抗丝状病毒药物靶点研发的小分子抑制剂、单克隆抗体和基因治疗药物均有突破性进展。本文介绍了NPC1的结构及其在埃博拉病毒感染中的作用,并对靶向NPC1的小分子抑制剂、单克隆抗体药物和基因治疗药物的研究现状进行总结。 展开更多
关键词 埃博拉病毒 Niemann-pick C1蛋白 小分子抑制剂 抗体 基因治疗
暂未订购
Comparative experimental analysis on various picking types under dedicated and random storage assignments for automated storage and retrieval systems 被引量:1
11
作者 王坤 HE Fang +2 位作者 张光远 JIANG Shan GONG Di 《Journal of Chongqing University》 CAS 2018年第3期101-118,共18页
Product storage policy, single picking volume and picking routing are the three factors of vital importance that affect the efficiency of a crane to pick goods in automated storage and retrieval systems(AS/RS). Compar... Product storage policy, single picking volume and picking routing are the three factors of vital importance that affect the efficiency of a crane to pick goods in automated storage and retrieval systems(AS/RS). Comparative experiments on picking efficiency were conducted targeting picking operation with order of 1 to 20. Based on dedicated and random storage policies, 4 picking methods of patching-based, S-type, return-type and optimized-type routes were used and compared in the experiments. The results show that either the dedicated policy or the random policy was applied, crane worked most efficiently with optimizedtype route, followed by S-type path, patching-based path, and return-type path. When the number of orders in a single picking is larger(more than 5), the random storage policy is preferable to the dedicated policy. 展开更多
关键词 dedicated storage policy random storage policy patching-based picking S-type picking return-type picking optimized-type picking
在线阅读 下载PDF
A regression approach for seismic first-break picking
12
作者 Huan Yuan San-Yi Yuan +2 位作者 Jie Wu Wen-Jing Sang Yu-He Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1584-1596,共13页
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois... The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application. 展开更多
关键词 First-break picking Low signal-to-noiseratio Regression BiLSTM TRAVELTIME Geometry Noisy seismic data
原文传递
First-Arrival Picking Method for Active Source Data with Ocean Bottom Seismometers Based on Spatial Waveform Variation Characteristics
13
作者 LIU Hongwei XING Lei +3 位作者 ZHU Henghua ZHANG Jin ZHANG Jing LIU Huaishan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期970-980,共11页
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo... The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data. 展开更多
关键词 first-arrival picking spatial waveform variation label cross-correlation superposition method
在线阅读 下载PDF
Intelligent evaluation of mean cutting force of conical pick by boosting trees and Bayesian optimization
14
作者 LIU Zi-da LIU Yong-ping +3 位作者 SUN Jing YANG Jia-ming YANG Bo LI Di-yuan 《Journal of Central South University》 CSCD 2024年第11期3948-3964,共17页
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f... Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF. 展开更多
关键词 rock cutting conical pick mean cutting force boosting trees Bayesian optimization
在线阅读 下载PDF
Basic Research on the Burden of Dropping off and Picking up Children: Differences by Employment Type and Gender in the Tokyo Metropolitan Area
15
作者 Jun Morio Koshi Isono +1 位作者 Masahiko Kikuchi Tetsuo Morita 《Journal of Transportation Technologies》 2024年第3期445-461,共17页
There is a need to reduce the burden of child drop-off and pick-up for child-rearing generations, but most studies on the actual situation in Japan are based on survey results. In this study, we analyzed differences i... There is a need to reduce the burden of child drop-off and pick-up for child-rearing generations, but most studies on the actual situation in Japan are based on survey results. In this study, we analyzed differences in child drop-off and pick-up by employment type and gender, utilizing the “Metropolitan Area Person Trip Survey,” which is a statistical data set. The study targeted households in which both spouses were between 30 and 49 years old, had children under the age of 6, and included the following three groups. 1) Dual-income Group 1 (both spouses employed/on contract/temporary);2) Dual-income Group 2 (husband employed/on contract/temporary, wife part-time);3) Full-time housewife group (husband employed, wife unemployed). The analysis revealed that a) wives are almost always responsible for dropping off and picking up their children;b) husbands drop off and pick up their children less frequently in dual-income households;and c) households with children raising within 10 to 30 km of Tokyo Station have longer commuting times and need to reduce the burden of dropping off and picking up their children. 展开更多
关键词 Drop-Off and pick-Up Employment Type GENDER Dual-Income Households Tokyo Metropolitan Area
暂未订购
Pick病的诊断 被引量:3
16
作者 贾建军 卢文甫 +2 位作者 王鲁宁 汤洪川 尹岭 《中国医学影像技术》 CSCD 2001年第4期318-320,共3页
目的 探讨Pick病 (Pickdisease)诊断的正确性。方法 分析 2例临床上曾诊断为阿尔茨海默病(Alzheimerdisease,AD) ,经核磁共振成像 (MRI)检查证实的Pick病 ,其中 1例经正电子发射型计算机断层扫描 (PET)得到进一步证实。结果 Pick病... 目的 探讨Pick病 (Pickdisease)诊断的正确性。方法 分析 2例临床上曾诊断为阿尔茨海默病(Alzheimerdisease,AD) ,经核磁共振成像 (MRI)检查证实的Pick病 ,其中 1例经正电子发射型计算机断层扫描 (PET)得到进一步证实。结果 Pick病与AD比较有如下特点 :①特殊的语言方式及语言改变 ;②临床上以缓慢进展的性格改变及社会活动能力衰退为主 ,而记忆力、理解判断力、计算力障碍等出现相对较晚 ;③病程中有不同程度的Kl櫣ver Bucy综合征表现 ;④脑MRI检查提示 :额和 (或 )颞叶萎缩 ,颞极为著 ;⑤PET检查提示 :双侧额、颞叶代谢减低 ,颞极明显。结论 根据Pick病临床表现及神经影像学特征 ,在排除AD及其它脑变性病的基础上 ,生前诊断Pick病是可能的。 展开更多
关键词 pick 阿尔茨海默病 磁共振成像 正电子发射型计算机断层扫描 诊断
暂未订购
PICK1蛋白生理功能及其作为药物新靶点研究进展 被引量:2
17
作者 段贤春 汪永忠 +9 位作者 高家荣 冯艺戎 李翔 吴健 刘晓闯 魏良兵 何云娇 朱红 李瑛 夏伦祝 《中国药理学通报》 CAS CSCD 北大核心 2013年第11期1606-1610,共5页
PICK1蛋白(protein interacting with C alpha kinase 1)是一种同时具有PDZ和BAR区域的支架蛋白,在哺乳动物体内与多种蛋白质相互作用,并被证明在多种生理过程中发挥重要的调节作用,同时参与了多种疾病病理过程。因此,PICK1蛋白可能成... PICK1蛋白(protein interacting with C alpha kinase 1)是一种同时具有PDZ和BAR区域的支架蛋白,在哺乳动物体内与多种蛋白质相互作用,并被证明在多种生理过程中发挥重要的调节作用,同时参与了多种疾病病理过程。因此,PICK1蛋白可能成为极具前景的疾病治疗靶点。该文通过对近年来国内外发表的相关文献进行整理与分析,综述了PICK1蛋白的生理功能与其作为药物靶点的研究新进展,旨在为PICK1蛋白的深入研究提供理论支持。 展开更多
关键词 pick1 PDZ结构域 生理功能 中风 脑病 药物靶点
暂未订购
Pick病的脑MRI研究 被引量:1
18
作者 卢文甫 王鲁宁 +2 位作者 贾建军 汤洪川 蔡幼铨 《中国医学影像技术》 CSCD 2001年第10期945-947,共3页
目的 研究Pick病患者脑萎缩变化的特点 ,并动态研究脑萎缩变化的程度和病程及临床之间的相互相关系。方法  2例Pick病患者分别进行 5次和 7次脑MRI动态观察 ,并和 6例Alzheimer病患者进行对比分析。结果 Pick病早期以Kluver Bacy综... 目的 研究Pick病患者脑萎缩变化的特点 ,并动态研究脑萎缩变化的程度和病程及临床之间的相互相关系。方法  2例Pick病患者分别进行 5次和 7次脑MRI动态观察 ,并和 6例Alzheimer病患者进行对比分析。结果 Pick病早期以Kluver Bacy综合征和情感障碍为突出 ,人格改变、行为异常、语言障碍为显著 ,而智能减退相对较轻较晚 ,脑MRI以额或 /和颞极萎缩为主 ,尤其颞上回前 1/ 3为明显 ,其脑MRI的改变和临床特征及病程相一致。“刀片”状、“剪刀”像和“锥柱”样或“蘑菇”状脑萎缩改变可能是Pick病的特点。结论 充分认识这些特征 ,以利于Pick病的早期临床诊断。 展开更多
关键词 pick MRI 诊断
暂未订购
Pick病3例临床及病理分析 被引量:1
19
作者 卢文甫 王鲁宁 +2 位作者 宋康兴 贾建华 汤洪川 《解放军医学杂志》 CAS CSCD 北大核心 2001年第11期847-849,共3页
通过分析 3例Pick病的临床、脑MRI、SPECT、PET和脑病理资料 ,发现和Alzheimer病相比 ,Pick病早期以人格变化、判断力改变较为特异 ,情感、情绪变化明显 ,Kl櫣ver Bucy综合征为特征 ,非流利性失语和语义性记忆障碍突出 ,而智能减退... 通过分析 3例Pick病的临床、脑MRI、SPECT、PET和脑病理资料 ,发现和Alzheimer病相比 ,Pick病早期以人格变化、判断力改变较为特异 ,情感、情绪变化明显 ,Kl櫣ver Bucy综合征为特征 ,非流利性失语和语义性记忆障碍突出 ,而智能减退及视觉空间定向能力受损相对较晚 ,脑MRI以颞极萎缩为重 ,SPECT和PET以额和 (或 )颞叶低灌流及低代谢为显著。提示应充分认识Pick病的特点 。 展开更多
关键词 临床病理学 脑皮克病 pick 早期诊断
暂未订购
PICK1:一个功能多样的药靶蛋白 被引量:2
20
作者 宋婀莉 高友鹤 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2007年第9期697-705,共9页
蛋白质是生命功能的执行者.生命体中某些关键蛋白的功能异常往往是导致疾病发生的根本原因.这些疾病相关蛋白极有可能成为药物靶点,为新药研发和疾病治疗提供重要线索.PICK1蛋白(protein interacting with Cαkinase1)结合能力广泛、功... 蛋白质是生命功能的执行者.生命体中某些关键蛋白的功能异常往往是导致疾病发生的根本原因.这些疾病相关蛋白极有可能成为药物靶点,为新药研发和疾病治疗提供重要线索.PICK1蛋白(protein interacting with Cαkinase1)结合能力广泛、功能多样以及在多种重要疾病(如:癌症、精神分裂症、疼痛、帕金森综合症等)的发生发展过程中发挥潜在的作用,使其成为一个可能的药靶蛋白.PICK1与绝大多数配体蛋白的相互作用是通过其PDZ结构域与配体C末端区域的结合介导的,使PICK1的PDZ结构域成为一个潜在的药物靶点.因此,可以利用生物小分子物质特异性地结合PICK1的PDZ结构域,干扰或阻断PICK1与配体蛋白的天然相互作用,最终达到治疗相关疾病的目的. 展开更多
关键词 pick1(protein INTERACTING with Cαkinase 1) PDZ结构域 药物靶点 阻断性多肽
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部