真空直流断路器弧后介质恢复过程是决定其开断是否成功的重要物理过程,因而受到研究者的广泛关注。该文的主要目标是采用粒子模拟的方法研究真空断路器弧后金属蒸气击穿阶段的发展过程及影响因素,并基于粒子云网格(Particle in Cell)和...真空直流断路器弧后介质恢复过程是决定其开断是否成功的重要物理过程,因而受到研究者的广泛关注。该文的主要目标是采用粒子模拟的方法研究真空断路器弧后金属蒸气击穿阶段的发展过程及影响因素,并基于粒子云网格(Particle in Cell)和蒙特卡罗碰撞(Monte Carlo Collision)相结合的PIC-MCC方法,建立弧后金属蒸气击穿模型,对金属蒸气击穿的发展过程进行空间2维速度3维的仿真模拟,然后讨论触头表面温度、金属蒸气密度、触头开距、电压等重要因素对击穿的影响。模拟结果表明:在一定范围内,增大金属蒸气的密度,击穿发生的更迅速;触头温度越高,击穿更容易发生;暂态恢复电压峰值越高,击穿发生更快。另外,当场强不变时,对于较小开距,击穿反而不太容易发生,当开距较大时,击穿发生的时间几乎不受开距的影响。展开更多
With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is t...With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues.It is also important to the study of vacuum arc in vacuum switch.But for the limitations of available method used in analyzing the breakdown mechanism of vacuum,the main research on vacuum breakdown is macroscopic experiment.The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured.So the data from the experiments are dispersive and the complex physical change in vacuum breakdown can not be revealed.The purpose of this work is to analyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation.The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas.Based on the field emission theory in vacuum,electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study.The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions.Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules.The cross sections of the collision which is related with the energy are all from the experiments.The secondary electron emission,exciting,elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper.By the simulation,the number densities of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calculated. The effect of vacuum degree on discharge voltage is also discussed here.According to the simulation data,we draw the conclusion that the main reason for vacuum arc formation is metal vapor ionization and large amount of metal gas is from high energy electrons' collision with the anode.展开更多
在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo C...在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。展开更多
电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC(Particle in Cell-Monte C...电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC(Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。展开更多
采用粒子-蒙特卡罗模型(Particle in Cell-Monte Carlo Collision,PIC-MCC)对气体电子倍增探测器(Gas electron multiplier,GEM)的倍增放大过程进行了模拟,这对更好的理解和把握GEM的物理机理具有重要的意义。在电场分析的基础上,从GEM...采用粒子-蒙特卡罗模型(Particle in Cell-Monte Carlo Collision,PIC-MCC)对气体电子倍增探测器(Gas electron multiplier,GEM)的倍增放大过程进行了模拟,这对更好的理解和把握GEM的物理机理具有重要的意义。在电场分析的基础上,从GEM空间粒子数和粒子的空间分布随时间的变化分析GEM的倍增过程,并建立GEM增益和各边界层收集到的电子个数之间的关系。研究结果为进一步利用该模型对GEM优化结构、选择工作参数及探讨物理机理建立了基础。展开更多
利用基于PIC-MCC(Particle in cell-Monte Carlo collision)模型的OOPIC-PRO软件计算了107 cm荫罩式PDP实际单元和放大单元的放电,模拟结果表明相似放电单元具有相同的伏安特性,放电相对应时刻的空间粒子浓度分布相同,从数值实验角度验...利用基于PIC-MCC(Particle in cell-Monte Carlo collision)模型的OOPIC-PRO软件计算了107 cm荫罩式PDP实际单元和放大单元的放电,模拟结果表明相似放电单元具有相同的伏安特性,放电相对应时刻的空间粒子浓度分布相同,从数值实验角度验证了气体放电的重要定律:相似定律。在理论模拟的基础上,利用实际单元和放大单元的实验测试系统,测量并比较了放大单元和实际单元的放电电流,结果表明放大单元和实际单元的放电电流强度相当,但实际单元较放大单元的放电快约20倍。展开更多
文摘真空直流断路器弧后介质恢复过程是决定其开断是否成功的重要物理过程,因而受到研究者的广泛关注。该文的主要目标是采用粒子模拟的方法研究真空断路器弧后金属蒸气击穿阶段的发展过程及影响因素,并基于粒子云网格(Particle in Cell)和蒙特卡罗碰撞(Monte Carlo Collision)相结合的PIC-MCC方法,建立弧后金属蒸气击穿模型,对金属蒸气击穿的发展过程进行空间2维速度3维的仿真模拟,然后讨论触头表面温度、金属蒸气密度、触头开距、电压等重要因素对击穿的影响。模拟结果表明:在一定范围内,增大金属蒸气的密度,击穿发生的更迅速;触头温度越高,击穿更容易发生;暂态恢复电压峰值越高,击穿发生更快。另外,当场强不变时,对于较小开距,击穿反而不太容易发生,当开距较大时,击穿发生的时间几乎不受开距的影响。
基金Supported by National Natural Science Foundation of China(50877048)Program for New Century Excellent Talents in University of China(NECT-08-0863)Key Scientific and Technological project of Liaoning Science and Technology Department (2010219016)
文摘With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues.It is also important to the study of vacuum arc in vacuum switch.But for the limitations of available method used in analyzing the breakdown mechanism of vacuum,the main research on vacuum breakdown is macroscopic experiment.The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured.So the data from the experiments are dispersive and the complex physical change in vacuum breakdown can not be revealed.The purpose of this work is to analyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation.The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas.Based on the field emission theory in vacuum,electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study.The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions.Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules.The cross sections of the collision which is related with the energy are all from the experiments.The secondary electron emission,exciting,elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper.By the simulation,the number densities of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calculated. The effect of vacuum degree on discharge voltage is also discussed here.According to the simulation data,we draw the conclusion that the main reason for vacuum arc formation is metal vapor ionization and large amount of metal gas is from high energy electrons' collision with the anode.
文摘在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。
文摘电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC(Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。
文摘采用粒子-蒙特卡罗模型(Particle in Cell-Monte Carlo Collision,PIC-MCC)对气体电子倍增探测器(Gas electron multiplier,GEM)的倍增放大过程进行了模拟,这对更好的理解和把握GEM的物理机理具有重要的意义。在电场分析的基础上,从GEM空间粒子数和粒子的空间分布随时间的变化分析GEM的倍增过程,并建立GEM增益和各边界层收集到的电子个数之间的关系。研究结果为进一步利用该模型对GEM优化结构、选择工作参数及探讨物理机理建立了基础。
文摘利用基于PIC-MCC(Particle in cell-Monte Carlo collision)模型的OOPIC-PRO软件计算了107 cm荫罩式PDP实际单元和放大单元的放电,模拟结果表明相似放电单元具有相同的伏安特性,放电相对应时刻的空间粒子浓度分布相同,从数值实验角度验证了气体放电的重要定律:相似定律。在理论模拟的基础上,利用实际单元和放大单元的实验测试系统,测量并比较了放大单元和实际单元的放电电流,结果表明放大单元和实际单元的放电电流强度相当,但实际单元较放大单元的放电快约20倍。