AIM:To highlight the importance of microRNA(miRNA)-21-5p in directing the phosphatase and tensin homolog(PTEN)gene to control the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)...AIM:To highlight the importance of microRNA(miRNA)-21-5p in directing the phosphatase and tensin homolog(PTEN)gene to control the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway in retinal pigment epithelial(RPE)cells in humans subjected to photodamage.METHODS:Human adult RPE cell line-19(ARPE-19)was cultured in vitro and randomly divided into control,damage,overexpression,negative,and PI3K/Akt blocker groups to establish a photodamage model of ARPE-19 cells.The models were subjected to 24h of light exposure,after which the corresponding indices were detected.The cell counting kit-8 assay quantified cell viability,while flow cytometry determined apoptosis rates.The miRNA-21 mimics and miRNA mimic NC were transfected into ARPE-19 cells using a transient transfection technique.Quantitative reverse transcription polymerase chain reaction(SYBR Green)and Western blotting analyzed expression levels of miRNA-21-5p,PTEN,p-PI3K/PI3K,p-mTOR/mTOR,and p-Akt/Akt.Statistical analyses comprised one-way analysis of variance and the Student-Newman-Keuls test for multiple group comparisons.RESULTS:The photodamage group demonstrated reduced cell survival rates than the control group(P<0.01).The overexpression group exhibited higher cell survival rates than the injury group(P<0.01).The negative group showed no difference in viability(P>0.05).The PI3K/Akt blocker group demonstrated lower cell viability,compared with the overexpression group(P<0.01).CONCLUSION:miRNA-21-5p significantly increases ARPE-19 cell survival after photodamage and inhibits lightinduced ARPE-19 cell apoptosis,suggesting that it may play a protective role in RPE by activating the PI3K/Akt/mTOR pathway while downregulating PTEN expression.展开更多
Cancer represents a significant disease that profoundly impacts human health and longevity.Projections indicate a 47%increase in the global cancer burden by 2040 compared to 2020,accompanied by a further rise in the a...Cancer represents a significant disease that profoundly impacts human health and longevity.Projections indicate a 47%increase in the global cancer burden by 2040 compared to 2020,accompanied by a further rise in the associated economic burden.Consequently,there is an urgent need to discover and develop new alternative drugs to mitigate the global impact of cancer.Natural products(NPs)play a crucial role in the identification and development of anticancer therapeutics.This study identified ustusolate E(UE)and its analog 11α-hydroxy-ustusolate E(HUE)from strain Aspergillus calidoustus TJ403-EL05,and examined their antitumor activities and mechanisms of action.The findings demonstrate that both compounds significantly inhibited the proliferation and colony formation of AGS(human gastric cancer cells)and 786-O(human renal clear cell carcinoma cells),induced irreversible DNA damage,blocked the cell cycle at the G_(2)/M phase,and further induced apoptosis in tumor cells.To the best of the authors’knowledge,this is the first report on the anticancer effects of UE and HUE and their underlying mechanisms.The present study suggests that HUE and UE could serve as lead compounds for the development of novel anticancer drugs.展开更多
Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and publ...Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and public databases.Functional assays(CCK⁃8,colony formation,EdU,and Transwell)were employed to evaluate KIF11’s roles in CRC progression.Western blot,RIP⁃qPCR,MeRIP⁃qPCR,and RNA stability assays were performed to elucidate the molecular mechanism of N6⁃methyladenosine(m6A)modification for KIF11.RNA sequencing(RNA⁃seq)and correlation analysis were used to examine the downstream mechanism of KIF11 regulation.Results:KIF11 was highly expressed in CRC and promoted CRC proliferation and migration.Mechanistically,methyltransferase⁃like 3(METTL3)/insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)enhanced KIF11 mRNA stability and expression in an m6A⁃dependent way.Furthermore,by means of the PROM1/PI3K/AKT pathway,KIF11 facilitated the progression of CRC.Conclusion:The m6A modification of KIF11 by METTL3/IGF2BP2 contributes to CRC progression via the PI3K/AKT signaling pathway,highlighting its potential as a prognostic biomarker and therapeutic target.展开更多
OBJECTIVE To explore hypoglycemic effect of 95%ethanol fraction of Nitraria roborowskii Kom(NRK-C)and its possible mechanism evaluated in the type 2 diabetes mellitus(T2DM)mice.METHODS The body weight,organ indices,bl...OBJECTIVE To explore hypoglycemic effect of 95%ethanol fraction of Nitraria roborowskii Kom(NRK-C)and its possible mechanism evaluated in the type 2 diabetes mellitus(T2DM)mice.METHODS The body weight,organ indices,blood glucose levels,serum biochemical indexes,as well as HE/PAS histopathological section were all analyzed to assess the hypoglycemic effect of NRK-C in T2DM mice induced by a high-fat diet(HFD)combined with six intraperitoneal injections of 35 mg·kg^(-1)of streptozotocin(STZ).The Western blotting and immunofluorescence were further applied to determine the regulatory effect of NRK-C on key signaling proteins.RESULTS The fasting blood glucose levels were significantly reduced after 7 weeks of administration of NRK-C.In addition,NRK-C could also significantly improve glucose tolerance,hepatic glycogen levels,and lipid levels(total cholesterol,triglyceride,low density lipoprotein and high density lipoprotein),and significantly reduced insulin resistance of diabetic mice,which played an important role in the antidiabetic effects.Further mechanism research demonstrated that phosphorylated PI3K expression was up-regulated and p-GSK3βexpression was up-regulated after NRK-C intervention,indicating that NRK-C might exert a potential antidiabetic effect by modulating the PI3K/AKT signaling pathway.CONCLUSION All these results suggested that NRK-C might improve T2DM and had the potential to be used as an adjunctive therapy.展开更多
Objective To evaluate the expression pattern of non-SMC condensin II complex subunit D3(NCAPD3)in hepatocellular carcinoma(HCC)tissues,assess its association with clinical characteristics,and explore the effects of NC...Objective To evaluate the expression pattern of non-SMC condensin II complex subunit D3(NCAPD3)in hepatocellular carcinoma(HCC)tissues,assess its association with clinical characteristics,and explore the effects of NCAPD3 on HCC cells and the potential underlying mechanisms.Methods NCAPD3 expression in HCC tumors and adjacent noncancerous tissues was quantified via quantitative PCR.Patients were divided into high-and low-expression groups on the basis of NCAPD3 levels,and associations with clinical parameters were assessed.The effects of NCAPD3 knockdown and the phosphatidylinositol-3-kinase(PI3K)agonist Y-P 740 on cell functions were examined via cell proliferation,Transwell migration,and invasion assays.Differentially expressed genes following NCAPD3 knockdown in SMMC-7721 cells were identified via mRNA sequencing.Western blotting was performed to measure NCAPD3,AKT serine/threonine kinase 1(AKT1),and phosphorylated AKT1 levels.Results NCAPD3 mRNA expression was notably upregulated in HCC tissues as compared with that in adjacent noncancer tissues.A positive correlation was observed between NCAPD3 expression and both lymphatic and distant metastases in patients with HCC.NCAPD3 knockdown reduced the proliferation and metastasis of SMMC-7721 and Huh-7 cells.mRNA sequencing revealed 140 downregulated genes and 125 upregulated genes.Further validation experiments confirmed that NCAPD3 modulated the PI3K-AKT signalling pathway and that the PI3K agonist Y-P 740 counteracted the effects of NCAPD3 knockdown.Conclusions Elevated NCAPD3 expression was strongly correlated with HCC metastasis.NCAPD3 inhibition impedes HCC cell growth and metastatic potential by suppressing the PI3K–AKT signalling pathway.展开更多
Background Colitis caused by bacterial infection is a major global health challenge.Unfortunately,current treatment options are limited.We previously disclosed that L.reuteri SXDT-32 was enriched in the feces of an an...Background Colitis caused by bacterial infection is a major global health challenge.Unfortunately,current treatment options are limited.We previously disclosed that L.reuteri SXDT-32 was enriched in the feces of an ancient diarrhearesistant pig breed(Mashen pig)in China over 2500 years old.As diarrhea is often closely associated with intestinal inflammation,L.reuteri SXDT-32 was identified as a potential beneficial bacterium to prevent intestinal inflammation.However,the precise mechanisms involved remained unclear.Results Our tests showed that L.reuteri SXDT-32 alleviated colonic damage induced by pathogenic E.coli SKLAN202302 in weaned pigs by enhancing barrier integrity and inhibiting inflammation.The transcriptomics revealed that L.reuteri SXDT-32 protected against inflammatory injury by inhibiting the PI3K-AKT signaling pathway.Metabolite analysis indicated that the content of shikimic acid(SA)was substantially elevated in the colonic mucosa of L.reuteri SXDT-32-fed piglets(P<0.05).In addition,Liquid Chromatography-Mass Spectrometer(LC-MS)analysis showed significant increases in SA content in both the colonic chyme of L.reuteri SXDT-32-fed piglets and the supernatant of in vitro grown cultures of L.reuteri SXDT-32(P<0.05).Polymerase chain reaction(PCR)analysis identified gene aroE from L.reuteri SXDT-32,which is a key gene directly linked to SA synthesis,and elevated shikimate dehydrogenase(SD,encoded by aroE)was also detected in both L.reuteri SXDT-32 and the colonic mucosa of piglets fed L.reuteri SXDT-32(P<0.01).In vitro Caco-2 cell experiments demonstrated that SA,L.reuteri SXDT-32,and the supernatant from in vitro grown cultures of L.reuteri SXDT-32 exhibited comparable inhibitory effects on the PI3K-Akt pathway to those of the PI3K inhibitor LY294002.Conclusions L.reuteri SXDT-32 alleviated intestinal inflammation in piglets by producing SA that inhibits the PI3K-Akt pathway.This study provides an innovative approach for the treatment and prevention of colitis caused by bacterial infection.展开更多
Inflammation underlies many chronic diseases,and inflammatory bowel disease(IBD)is a condition characterized by long-term inflammation of the gut.Egg whites have been shown to contain many beneficial active substances...Inflammation underlies many chronic diseases,and inflammatory bowel disease(IBD)is a condition characterized by long-term inflammation of the gut.Egg whites have been shown to contain many beneficial active substances.Therefore,we obtained 2 peptides from salted egg white:Val-Val-His-Phe(VF-4)and Asp-Thr-Gln-Ala-Met-Pro-Phe-Arg(DR-8).The sodium dextran sulfate(DSS)-induced mice colitis model was used to evaluate its regulatory effect on colitis in vivo.The results showed that VF-4 and DR-8 improved the clinical symptoms of DSS-induced colitis,attenuated colon tissue damage,inhibited the activation of nuclear factor kappa-B(NF-κB)/mitogen-activated protein kinase(MAPK)/phosphoinositide 3-kinase-Akt(PI3K-AKT)signaling pathways,and inhibited the expression of inflammatory cytokines.16S rRNA gene sequencing showed that VF-4 and DR-8 administration increased the relative abundance of intestinal beneficial bacteria including Lactobacillus,Blautia,and down-regulated the relative abundance of inflammation-related bacteria including Acinetobacter,Lachnospiraceae_NK4A136_group,Klebsiella.Moreover,the degree of correlation between pro-inflammatory cytokines and microbiota was as follows:interleukin-6(IL-6)>tumor necrosis factor-α(TNF-α)>interleukin-1β(IL-1β)>interferon-γ(IFN-γ).In conclusion,this study suggests that salted egg white peptides VF-4 and DR-8 have a significant antiinflammatory effect in vivo.It also provides a strategy for the treatment of IBD and a new way for the highvalue utilization of salted egg white.展开更多
Objective To investigate the effect of electroacupuncture(EA)on microRNA(miRNA)expression spectrum and PI3K/Akt/mTOR signaling pathway in uterine tissue of rats with primary dysmenorrhea(PDM),and to explore the potent...Objective To investigate the effect of electroacupuncture(EA)on microRNA(miRNA)expression spectrum and PI3K/Akt/mTOR signaling pathway in uterine tissue of rats with primary dysmenorrhea(PDM),and to explore the potential mechanism of EA in the treatment of PDM.Methods Thirty female SD rats,weighted(200±20)g were randomly divided into control group,model group and EA group,10 rats in each group.By using subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin,PDM models were established.Rats in the EA group received EA at“Sanyinjiao”(SP6)and“Guanyuan”(CV4)at dense waves and a frequency of 50 Hz,once a day,20 min each time,for 10 consecutive days.After the 10-day intervention,samples were collected and transmission electron microscopy was used to observe the ultrastructural changes of the cells in uterine tissue in each group.With RNA-seq method,the changes of miRNA expression spectrum in rat uterine tissue were detected.Bioinformatics analysis such as GO functional annotation and KEGG pathway was performed according to differentially expressed miRNAs.Differentially expressed miRNAs were verified by qRT-PCR.Endometrial stromal cells were selected as the target cells and transfected;and they were divided into control group,NC mimics group,mimic miR-144–3p group,NC inhibitor group and inhibitor miR-144–3p group.The apoptosis was determined by using flow cytometrydetect apoptosis,the miRNA and protein expression of PI3K/Akt/mTOR signaling pathway were detected by qRT-PCR and Western blot in each group separately.Results 1.Transmission electron microscope.(1)Control group:no obvious morphological changes in the uterine tissue.(2)Model group:fibroblasts in uterine tissue were irregular,the edema was presented in cellular cytoplasm,the nuclei were irregular and mitochondria swollen seriously;the rough endoplasmic reticulum was expanded moderately.(3)EA group:fibroblasts were spindle-shaped and pyknotic,the cytoplasm increased in electron density,the nuclei were slightly irregular and pyknotic,mitochondria were oval in shape,with little swelling and vacuolation;the rough endoplasmic reticulum was expanded slightly and retained,with a small amount of degranulation.2.Compared with the control group,there were 26 differentially expressed miRNAs in the uterine tissue of rats with PDM.After EA intervention,the expression of miR-144–3p was significantly up-regulated.GO functional analysis of differentially expressed miRNAs in PDM rats after EA showed that the biological functions involved calcium transmembrane transporter activity,mitogen-activated protein kinase binding,epithelial cell migration,tissue migration,etc.3.KEGG pathway analysis showed that PI3K/Akt signaling pathway,MAPK signaling pathway and calcium signaling pathway were enriched.Mimic miR-144-3p increased the apotosis of endometrial stromal cells,and decreased the mRNA and protein expression of PI3K,Akt,and mTOR(P<0.01).Conclusion EA can optimize the cell morphology in the uterine tissue of rats with PDM and affect the miRNA expression spectrum,which may be associated with the effect of EA for up-regulating miR-144–3p expression in endometrial stromal cells,suppressing PI3K/Akt/mTOR signaling pathway and causing apoptosis.展开更多
PI3K/AKT/mTOR signaling pathway is a key pathway of myocardial ischemia-reperfusion injury(MIRI).The mechanism of action is mainly oxidative stress,inflammatory response,calcium overload,ferroptosis,autophagy,and apop...PI3K/AKT/mTOR signaling pathway is a key pathway of myocardial ischemia-reperfusion injury(MIRI).The mechanism of action is mainly oxidative stress,inflammatory response,calcium overload,ferroptosis,autophagy,and apoptosis.MIRI belongs to the category of chest obstruction in traditional Chinese medicine,and its etiology and pathogenesis are mainly“Yang Wei Yin Xian.”Traditional Chinese medicine has the effect of multi-target and multi-component effect,and has played a significant role in the treatment of MIRI in recent years.At present,the monomers of traditional Chinese medicine mainly include saponins,flavonoids,alkaloids,terpenoids,and phenols,and the compounds mainly include Zhigancao Decoction,Zhenyuan Capsule,Jiawei Shenqibai Powder,Qili Qiangxin Capsule,Tongmai Yangxin Pill,Zhilong Huoxue Tongyu Capsule,Guizhi Tongluo Tablets,etc.This paper reviews the research on the improvement of MIRI by regulating PI3K/AKT/mTOR signaling pathway in recent years,and expounds the mechanism and advantages of traditional Chinese medicine in the treatment of MIRI.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with significant metabolic and renal complications,including diabetic nephropathy(DN).AIM To investigate the role of ribonucleotide reductase regulatory subunit M...BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with significant metabolic and renal complications,including diabetic nephropathy(DN).AIM To investigate the role of ribonucleotide reductase regulatory subunit M2(RRM2)in T2DM and its potential involvement in renal injury through oxidative stress,apoptosis,and ferroptosis.METHODS A cross-sectional study was conducted,comprising 194 patients with T2DM and 120 healthy controls at our hospital between January 2022 and December 2023.The data were analyzed to ascertain the correlation between RRM2 levels and DN onset in patients with T2DM.The apoptosis rate,reactive oxygen species(ROS)levels,oxidative stress,cystine uptake,and ferrous ion(Fe2+)levels were quantified using the HK-2 cell lysates.Reverse transcription quantitative PCR and western blotting were used to assess mRNA and protein expression,respectively.RESULTS Serum RRM2 levels were significantly higher in T2DM patients than in controls(P<0.05)but declined in the macroalbuminuria subgroup.Receiver operating characteristic analysis identified 30 pg/mL as the optimal cut-off(area under the curve=0.958;sensitivity=86%;specificity=95%).RRM2 was negatively correlated with age,diabetes duration,systolic blood pressure,fasting blood glucose,glycosylated hemoglobin,serum creatinine,neutrophil gelatinase-associated lipocalin,kidney injury molecule-1,and malondialdehyde,and positively correlated with estimated glomerular filtration rate,glutathione(GSH),solute carrier family 7 member 11(SLC7A11),and GSH peroxidase 4(GPX4).Logistic regression confirmed RRM2 as an independent protective factor against DN[odds ratio(OR)=0.820,95%confidence interval(95%CI)=0.712-0.945,P=0.006].In vitro,RRM2 overexpression enhanced HK-2 cell proliferation,activated PI3K/Akt signaling,and reduced apoptosis,ROS,oxidative stress,and ferroptosis,accompanied by the restoration of GSH,Nrf2,SLC7A11,and GPX4.These protective effects were abolished by PI3K/Akt inhibition,highlighting RRM2’s renoprotective,pathway-dependent role.CONCLUSION These findings suggest that RRM2 plays a crucial protective role against diabetic renal injury by mitigating oxidative stress,apoptosis,and ferroptosis via PI3K/Akt activation.Serum RRM2 may serve as a novel biomarker for early DN detection,and therapeutic strategies targeting RRM2 may offer potential benefits in preventing diabetic kidney disease progression.展开更多
Epidemiological studies have indicated that branched-chain amino acids(BCAAs)increased and gut microbiota disordered in type 2 diabetes mellitus(T2DM).This study aimed to investigate the mechanism of Lactiplantibacill...Epidemiological studies have indicated that branched-chain amino acids(BCAAs)increased and gut microbiota disordered in type 2 diabetes mellitus(T2DM).This study aimed to investigate the mechanism of Lactiplantibacillus plantarum strain 84-3(Lp84-3)combined with Staphylococcus aureus bacteriophage on ameliorating T2DM.Here we perform a case-control study and identify that Staphylococcus_phage was inversely correlated with fasting blood glucose(FBG).It revealed that Lp84-3 could inhibit the growth of S.aureus,and Lp84-3 contains BCAAs degradation enzymes in its genome.Furthermore,Lp84-3 alone or combined with S.aureus bacteriophage interventions can improve blood glucose,insulin resistance,triglycerides,interleukin-1β,tumor necrosis factor-α(TNF-α),BCAAs,and acetyllactate synthase(ALS)in db/db mice.Lp84-3 and S.aureus bacteriophage decreased S.aureus,Malacoplasma iowae,and Oscillibacter sp.,and increased some beneficial such as L.plantarum and Muribaculaceae bacterium.Transcriptomic analyses revealed that Lp84-3 and S.aureus bacteriophage activated the PI3K/AKT/GLUT4 signaling pathway and upregulated key genes of Il22,Hgf,Col6a1,Gh,Itga10,Fgf23,and Prl involved in glucose metabolism in hypothalamus.Collectively,Lp84-3 and S.aureus bacteriophage alleviate T2DM by modulating gut microbiota and enhancing glucose metabolism in hypothalamus,supporting its potential use as a promising functional compound microecological agent for alleviating T2DM.展开更多
BACKGROUND Gastric cancer(GC)is a widespread malignancy and associated with high rates of morbidity and mortality worldwide.AIM To examine the functional role of long non-coding RNAs small nucleolar RNA host gene 5(SN...BACKGROUND Gastric cancer(GC)is a widespread malignancy and associated with high rates of morbidity and mortality worldwide.AIM To examine the functional role of long non-coding RNAs small nucleolar RNA host gene 5(SNHG5)and its regulation of miR-92a-3p and B-cell translocation gene 2(BTG2)in GC progression.METHODS Quantitative reverse transcription PCR and western blot analysis determined the expression of SNHG5,miR-92a-3p,and BTG2 in GC and adjacent non-neoplastic mucosa.Dual-luciferase assays demonstrated interactions of SNHG5 with miR-92a-3p and BTG2.AGS cells were transfected with SNHG5 overexpression and miR-92a-3p knockdown models.Various assays,including CCK-8,colony formation,scratch wound healing,and Transwell assays,were used to determine cell proliferation and migration.An experimental model of a xenograft mouse was used to determine in vivo tumor growth.At the same time histological changes were evaluated by hematoxylin and eosin staining,with western blot analysis used to evaluate signaling pathway protein expression.RESULTS BTG2 and SNHG5 were downregulated in GC tissues,and miR-92a-3p was upregulated.Overexpression of SNHG5 or knockdown of miR-92a-3p reduced GC cell proliferation and migration,and increased BTG2 expression while decreasing PI3K/AKT signaling activity.The dual-luciferase assays demonstrated direct binding of miR-92a-3p to SNHG5 and BTG2.Tumor volume and weight were significantly reduced in mice transplanted with AGS cells treated with miR-92a-3p inhibitor or SNHG5 overexpression compared with control AGS cells.Hematoxylin and eosin staining revealed that treated tumors exhibited degenerative characteristics,including irregular morphology and nucleolysis.CONCLUSION LncRNA SNHG5 inhibited GC cell growth and migration by modulating the PI3K/AKT pathway via the miR-92a-3p/BTG2 axis.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations...BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to H...Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN lowexpression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA.Results Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model(25 and 10 μmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression.Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels.Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.展开更多
Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)...Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)remain unexplored.Methods:Initially,The Cancer Genome Atlas(TCGA)based Gene Expression Profiling Interactive Analysis(GEPIA)database (http:/gepia.cancer-pku.cn/)was used to analyze the prognostic relevance of DARS2 expression in LUAD.Further,cell counting kit(CCK)8,immunostaining,and transwell invasion assays in LUAD cell lines in vitro,as well as DARS2 silence on LUAD by tumorigenicity experiments in wivo in nude mice,were performed.Besides,we analyzed the expression levels of p-PI3K(phosphorylated Phosphotylinosital3 kinase),PI3K,AKT(Protein Kinase B),p-AKT(phosphorylated Protein Kinase B),PCNA(proliferating cell nudear antigen),cleaved-caspase 3,E cadherin,and N-cadherin proteins using the Westem blot analysis.Results:LUAD tissues showed higher DARS2 expression compared to normal tissues.Upregulation of DARS2 could be related to Tumor-Node-Metastasis(TNM)stage,high lymph node metastasis,and inferior prognosis.DARS2 silence decreased the proliferation,migration,and invasion abilities of LUAD cells.In addition,the DARS2 downregulation decreased the PCNA and N-cadherin expression and increased cleaved:caspase 3 and E cadherin expressions in LUAD cells,coupled with the inactivation of the PI3K/AKT signaling pathway.Moreover,DARS2 silence impaired the tumonigenicity of LUAD in vivo.Interestingly,let:7b-5p could recognize DARS2 through a complementary sequence.Mechanistically,the increased let 7b 5p expression attenuated the promo oncogenic action of DARS2 during LUAD progression,which were inversely correlated to each other in the LUAD tssues Conclusion:In summary,let 7b-5p,downregulated DARS2 expression,regulating the progression of LUAD cells by the PI3K/AKT signaling pathway.展开更多
文摘AIM:To highlight the importance of microRNA(miRNA)-21-5p in directing the phosphatase and tensin homolog(PTEN)gene to control the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway in retinal pigment epithelial(RPE)cells in humans subjected to photodamage.METHODS:Human adult RPE cell line-19(ARPE-19)was cultured in vitro and randomly divided into control,damage,overexpression,negative,and PI3K/Akt blocker groups to establish a photodamage model of ARPE-19 cells.The models were subjected to 24h of light exposure,after which the corresponding indices were detected.The cell counting kit-8 assay quantified cell viability,while flow cytometry determined apoptosis rates.The miRNA-21 mimics and miRNA mimic NC were transfected into ARPE-19 cells using a transient transfection technique.Quantitative reverse transcription polymerase chain reaction(SYBR Green)and Western blotting analyzed expression levels of miRNA-21-5p,PTEN,p-PI3K/PI3K,p-mTOR/mTOR,and p-Akt/Akt.Statistical analyses comprised one-way analysis of variance and the Student-Newman-Keuls test for multiple group comparisons.RESULTS:The photodamage group demonstrated reduced cell survival rates than the control group(P<0.01).The overexpression group exhibited higher cell survival rates than the injury group(P<0.01).The negative group showed no difference in viability(P>0.05).The PI3K/Akt blocker group demonstrated lower cell viability,compared with the overexpression group(P<0.01).CONCLUSION:miRNA-21-5p significantly increases ARPE-19 cell survival after photodamage and inhibits lightinduced ARPE-19 cell apoptosis,suggesting that it may play a protective role in RPE by activating the PI3K/Akt/mTOR pathway while downregulating PTEN expression.
基金supported by the Program for Changjiang Scholars of the Ministry of Education of the People’s Republic of China (No. T2016088)the National Natural Science Foundation for Distinguished Young Scholars (No. 81725021)+4 种基金the National Key R&D Program of China (No. 2021YFA0910500)the Science and Technology Major Project of Hubei Province (No.2021ACA012)the Innovative Research Groups of the National Natural Science Foundation of China (No. 81721005)the Academic Frontier Youth Team of HUST (No. 2017QYTD19)the Fundamental Research Funds for the Central Universities (No.2172019kfy XJJS166)
文摘Cancer represents a significant disease that profoundly impacts human health and longevity.Projections indicate a 47%increase in the global cancer burden by 2040 compared to 2020,accompanied by a further rise in the associated economic burden.Consequently,there is an urgent need to discover and develop new alternative drugs to mitigate the global impact of cancer.Natural products(NPs)play a crucial role in the identification and development of anticancer therapeutics.This study identified ustusolate E(UE)and its analog 11α-hydroxy-ustusolate E(HUE)from strain Aspergillus calidoustus TJ403-EL05,and examined their antitumor activities and mechanisms of action.The findings demonstrate that both compounds significantly inhibited the proliferation and colony formation of AGS(human gastric cancer cells)and 786-O(human renal clear cell carcinoma cells),induced irreversible DNA damage,blocked the cell cycle at the G_(2)/M phase,and further induced apoptosis in tumor cells.To the best of the authors’knowledge,this is the first report on the anticancer effects of UE and HUE and their underlying mechanisms.The present study suggests that HUE and UE could serve as lead compounds for the development of novel anticancer drugs.
基金江苏省卫生健康委员会医学科研重点项目(K2023024)789 Outstanding Talent Program of SAHNMU(789ZYRC202090147)。
文摘Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and public databases.Functional assays(CCK⁃8,colony formation,EdU,and Transwell)were employed to evaluate KIF11’s roles in CRC progression.Western blot,RIP⁃qPCR,MeRIP⁃qPCR,and RNA stability assays were performed to elucidate the molecular mechanism of N6⁃methyladenosine(m6A)modification for KIF11.RNA sequencing(RNA⁃seq)and correlation analysis were used to examine the downstream mechanism of KIF11 regulation.Results:KIF11 was highly expressed in CRC and promoted CRC proliferation and migration.Mechanistically,methyltransferase⁃like 3(METTL3)/insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)enhanced KIF11 mRNA stability and expression in an m6A⁃dependent way.Furthermore,by means of the PROM1/PI3K/AKT pathway,KIF11 facilitated the progression of CRC.Conclusion:The m6A modification of KIF11 by METTL3/IGF2BP2 contributes to CRC progression via the PI3K/AKT signaling pathway,highlighting its potential as a prognostic biomarker and therapeutic target.
文摘OBJECTIVE To explore hypoglycemic effect of 95%ethanol fraction of Nitraria roborowskii Kom(NRK-C)and its possible mechanism evaluated in the type 2 diabetes mellitus(T2DM)mice.METHODS The body weight,organ indices,blood glucose levels,serum biochemical indexes,as well as HE/PAS histopathological section were all analyzed to assess the hypoglycemic effect of NRK-C in T2DM mice induced by a high-fat diet(HFD)combined with six intraperitoneal injections of 35 mg·kg^(-1)of streptozotocin(STZ).The Western blotting and immunofluorescence were further applied to determine the regulatory effect of NRK-C on key signaling proteins.RESULTS The fasting blood glucose levels were significantly reduced after 7 weeks of administration of NRK-C.In addition,NRK-C could also significantly improve glucose tolerance,hepatic glycogen levels,and lipid levels(total cholesterol,triglyceride,low density lipoprotein and high density lipoprotein),and significantly reduced insulin resistance of diabetic mice,which played an important role in the antidiabetic effects.Further mechanism research demonstrated that phosphorylated PI3K expression was up-regulated and p-GSK3βexpression was up-regulated after NRK-C intervention,indicating that NRK-C might exert a potential antidiabetic effect by modulating the PI3K/AKT signaling pathway.CONCLUSION All these results suggested that NRK-C might improve T2DM and had the potential to be used as an adjunctive therapy.
基金supported by grants from Guangxi Nanning Qingxiu District Key Research and Development Program of Science and Technology Plan(no.2020050)Guangxi Medical and Health Appropriate Technology Development,Promotion and Application Project(no.S2021097)+1 种基金Guangxi Key Research and Development Program(no.AB22080064)Guangxi Natural Science Foundation(no.2017GXNSFAA198126).
文摘Objective To evaluate the expression pattern of non-SMC condensin II complex subunit D3(NCAPD3)in hepatocellular carcinoma(HCC)tissues,assess its association with clinical characteristics,and explore the effects of NCAPD3 on HCC cells and the potential underlying mechanisms.Methods NCAPD3 expression in HCC tumors and adjacent noncancerous tissues was quantified via quantitative PCR.Patients were divided into high-and low-expression groups on the basis of NCAPD3 levels,and associations with clinical parameters were assessed.The effects of NCAPD3 knockdown and the phosphatidylinositol-3-kinase(PI3K)agonist Y-P 740 on cell functions were examined via cell proliferation,Transwell migration,and invasion assays.Differentially expressed genes following NCAPD3 knockdown in SMMC-7721 cells were identified via mRNA sequencing.Western blotting was performed to measure NCAPD3,AKT serine/threonine kinase 1(AKT1),and phosphorylated AKT1 levels.Results NCAPD3 mRNA expression was notably upregulated in HCC tissues as compared with that in adjacent noncancer tissues.A positive correlation was observed between NCAPD3 expression and both lymphatic and distant metastases in patients with HCC.NCAPD3 knockdown reduced the proliferation and metastasis of SMMC-7721 and Huh-7 cells.mRNA sequencing revealed 140 downregulated genes and 125 upregulated genes.Further validation experiments confirmed that NCAPD3 modulated the PI3K-AKT signalling pathway and that the PI3K agonist Y-P 740 counteracted the effects of NCAPD3 knockdown.Conclusions Elevated NCAPD3 expression was strongly correlated with HCC metastasis.NCAPD3 inhibition impedes HCC cell growth and metastatic potential by suppressing the PI3K–AKT signalling pathway.
基金supported by National Natural Science Foundation of China(U22 A20515)National High-Level Talents Special Support Program of China(2021-WR-01)Agricultural Science and Technology Innovation Program(ASTIPIAS07).
文摘Background Colitis caused by bacterial infection is a major global health challenge.Unfortunately,current treatment options are limited.We previously disclosed that L.reuteri SXDT-32 was enriched in the feces of an ancient diarrhearesistant pig breed(Mashen pig)in China over 2500 years old.As diarrhea is often closely associated with intestinal inflammation,L.reuteri SXDT-32 was identified as a potential beneficial bacterium to prevent intestinal inflammation.However,the precise mechanisms involved remained unclear.Results Our tests showed that L.reuteri SXDT-32 alleviated colonic damage induced by pathogenic E.coli SKLAN202302 in weaned pigs by enhancing barrier integrity and inhibiting inflammation.The transcriptomics revealed that L.reuteri SXDT-32 protected against inflammatory injury by inhibiting the PI3K-AKT signaling pathway.Metabolite analysis indicated that the content of shikimic acid(SA)was substantially elevated in the colonic mucosa of L.reuteri SXDT-32-fed piglets(P<0.05).In addition,Liquid Chromatography-Mass Spectrometer(LC-MS)analysis showed significant increases in SA content in both the colonic chyme of L.reuteri SXDT-32-fed piglets and the supernatant of in vitro grown cultures of L.reuteri SXDT-32(P<0.05).Polymerase chain reaction(PCR)analysis identified gene aroE from L.reuteri SXDT-32,which is a key gene directly linked to SA synthesis,and elevated shikimate dehydrogenase(SD,encoded by aroE)was also detected in both L.reuteri SXDT-32 and the colonic mucosa of piglets fed L.reuteri SXDT-32(P<0.01).In vitro Caco-2 cell experiments demonstrated that SA,L.reuteri SXDT-32,and the supernatant from in vitro grown cultures of L.reuteri SXDT-32 exhibited comparable inhibitory effects on the PI3K-Akt pathway to those of the PI3K inhibitor LY294002.Conclusions L.reuteri SXDT-32 alleviated intestinal inflammation in piglets by producing SA that inhibits the PI3K-Akt pathway.This study provides an innovative approach for the treatment and prevention of colitis caused by bacterial infection.
基金the financial support provided by the Project of Jiangxi Provincial Department of Education,China(GJJ200433)。
文摘Inflammation underlies many chronic diseases,and inflammatory bowel disease(IBD)is a condition characterized by long-term inflammation of the gut.Egg whites have been shown to contain many beneficial active substances.Therefore,we obtained 2 peptides from salted egg white:Val-Val-His-Phe(VF-4)and Asp-Thr-Gln-Ala-Met-Pro-Phe-Arg(DR-8).The sodium dextran sulfate(DSS)-induced mice colitis model was used to evaluate its regulatory effect on colitis in vivo.The results showed that VF-4 and DR-8 improved the clinical symptoms of DSS-induced colitis,attenuated colon tissue damage,inhibited the activation of nuclear factor kappa-B(NF-κB)/mitogen-activated protein kinase(MAPK)/phosphoinositide 3-kinase-Akt(PI3K-AKT)signaling pathways,and inhibited the expression of inflammatory cytokines.16S rRNA gene sequencing showed that VF-4 and DR-8 administration increased the relative abundance of intestinal beneficial bacteria including Lactobacillus,Blautia,and down-regulated the relative abundance of inflammation-related bacteria including Acinetobacter,Lachnospiraceae_NK4A136_group,Klebsiella.Moreover,the degree of correlation between pro-inflammatory cytokines and microbiota was as follows:interleukin-6(IL-6)>tumor necrosis factor-α(TNF-α)>interleukin-1β(IL-1β)>interferon-γ(IFN-γ).In conclusion,this study suggests that salted egg white peptides VF-4 and DR-8 have a significant antiinflammatory effect in vivo.It also provides a strategy for the treatment of IBD and a new way for the highvalue utilization of salted egg white.
基金supported by the National Natural Science Foundation of China(no.82004490)Hunan Natural Science Foundation Youth Project:2021JJ40402the Innovation Platform Open Fund project of the Hunan Education Department(no.20K091).
文摘Objective To investigate the effect of electroacupuncture(EA)on microRNA(miRNA)expression spectrum and PI3K/Akt/mTOR signaling pathway in uterine tissue of rats with primary dysmenorrhea(PDM),and to explore the potential mechanism of EA in the treatment of PDM.Methods Thirty female SD rats,weighted(200±20)g were randomly divided into control group,model group and EA group,10 rats in each group.By using subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin,PDM models were established.Rats in the EA group received EA at“Sanyinjiao”(SP6)and“Guanyuan”(CV4)at dense waves and a frequency of 50 Hz,once a day,20 min each time,for 10 consecutive days.After the 10-day intervention,samples were collected and transmission electron microscopy was used to observe the ultrastructural changes of the cells in uterine tissue in each group.With RNA-seq method,the changes of miRNA expression spectrum in rat uterine tissue were detected.Bioinformatics analysis such as GO functional annotation and KEGG pathway was performed according to differentially expressed miRNAs.Differentially expressed miRNAs were verified by qRT-PCR.Endometrial stromal cells were selected as the target cells and transfected;and they were divided into control group,NC mimics group,mimic miR-144–3p group,NC inhibitor group and inhibitor miR-144–3p group.The apoptosis was determined by using flow cytometrydetect apoptosis,the miRNA and protein expression of PI3K/Akt/mTOR signaling pathway were detected by qRT-PCR and Western blot in each group separately.Results 1.Transmission electron microscope.(1)Control group:no obvious morphological changes in the uterine tissue.(2)Model group:fibroblasts in uterine tissue were irregular,the edema was presented in cellular cytoplasm,the nuclei were irregular and mitochondria swollen seriously;the rough endoplasmic reticulum was expanded moderately.(3)EA group:fibroblasts were spindle-shaped and pyknotic,the cytoplasm increased in electron density,the nuclei were slightly irregular and pyknotic,mitochondria were oval in shape,with little swelling and vacuolation;the rough endoplasmic reticulum was expanded slightly and retained,with a small amount of degranulation.2.Compared with the control group,there were 26 differentially expressed miRNAs in the uterine tissue of rats with PDM.After EA intervention,the expression of miR-144–3p was significantly up-regulated.GO functional analysis of differentially expressed miRNAs in PDM rats after EA showed that the biological functions involved calcium transmembrane transporter activity,mitogen-activated protein kinase binding,epithelial cell migration,tissue migration,etc.3.KEGG pathway analysis showed that PI3K/Akt signaling pathway,MAPK signaling pathway and calcium signaling pathway were enriched.Mimic miR-144-3p increased the apotosis of endometrial stromal cells,and decreased the mRNA and protein expression of PI3K,Akt,and mTOR(P<0.01).Conclusion EA can optimize the cell morphology in the uterine tissue of rats with PDM and affect the miRNA expression spectrum,which may be associated with the effect of EA for up-regulating miR-144–3p expression in endometrial stromal cells,suppressing PI3K/Akt/mTOR signaling pathway and causing apoptosis.
基金Natural Science Foundation of Guangxi(Grant No.2021JJD140147)。
文摘PI3K/AKT/mTOR signaling pathway is a key pathway of myocardial ischemia-reperfusion injury(MIRI).The mechanism of action is mainly oxidative stress,inflammatory response,calcium overload,ferroptosis,autophagy,and apoptosis.MIRI belongs to the category of chest obstruction in traditional Chinese medicine,and its etiology and pathogenesis are mainly“Yang Wei Yin Xian.”Traditional Chinese medicine has the effect of multi-target and multi-component effect,and has played a significant role in the treatment of MIRI in recent years.At present,the monomers of traditional Chinese medicine mainly include saponins,flavonoids,alkaloids,terpenoids,and phenols,and the compounds mainly include Zhigancao Decoction,Zhenyuan Capsule,Jiawei Shenqibai Powder,Qili Qiangxin Capsule,Tongmai Yangxin Pill,Zhilong Huoxue Tongyu Capsule,Guizhi Tongluo Tablets,etc.This paper reviews the research on the improvement of MIRI by regulating PI3K/AKT/mTOR signaling pathway in recent years,and expounds the mechanism and advantages of traditional Chinese medicine in the treatment of MIRI.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with significant metabolic and renal complications,including diabetic nephropathy(DN).AIM To investigate the role of ribonucleotide reductase regulatory subunit M2(RRM2)in T2DM and its potential involvement in renal injury through oxidative stress,apoptosis,and ferroptosis.METHODS A cross-sectional study was conducted,comprising 194 patients with T2DM and 120 healthy controls at our hospital between January 2022 and December 2023.The data were analyzed to ascertain the correlation between RRM2 levels and DN onset in patients with T2DM.The apoptosis rate,reactive oxygen species(ROS)levels,oxidative stress,cystine uptake,and ferrous ion(Fe2+)levels were quantified using the HK-2 cell lysates.Reverse transcription quantitative PCR and western blotting were used to assess mRNA and protein expression,respectively.RESULTS Serum RRM2 levels were significantly higher in T2DM patients than in controls(P<0.05)but declined in the macroalbuminuria subgroup.Receiver operating characteristic analysis identified 30 pg/mL as the optimal cut-off(area under the curve=0.958;sensitivity=86%;specificity=95%).RRM2 was negatively correlated with age,diabetes duration,systolic blood pressure,fasting blood glucose,glycosylated hemoglobin,serum creatinine,neutrophil gelatinase-associated lipocalin,kidney injury molecule-1,and malondialdehyde,and positively correlated with estimated glomerular filtration rate,glutathione(GSH),solute carrier family 7 member 11(SLC7A11),and GSH peroxidase 4(GPX4).Logistic regression confirmed RRM2 as an independent protective factor against DN[odds ratio(OR)=0.820,95%confidence interval(95%CI)=0.712-0.945,P=0.006].In vitro,RRM2 overexpression enhanced HK-2 cell proliferation,activated PI3K/Akt signaling,and reduced apoptosis,ROS,oxidative stress,and ferroptosis,accompanied by the restoration of GSH,Nrf2,SLC7A11,and GPX4.These protective effects were abolished by PI3K/Akt inhibition,highlighting RRM2’s renoprotective,pathway-dependent role.CONCLUSION These findings suggest that RRM2 plays a crucial protective role against diabetic renal injury by mitigating oxidative stress,apoptosis,and ferroptosis via PI3K/Akt activation.Serum RRM2 may serve as a novel biomarker for early DN detection,and therapeutic strategies targeting RRM2 may offer potential benefits in preventing diabetic kidney disease progression.
基金supported by research grants from the Guangdong Province Basic and Applied Basic Research Fund Project(2022A1515110447)Open Fund Project of the State Key Laboratory of Applied Microbiology in South China(SKLAM006-2022)+1 种基金74th batch of general funding from the China Postdoctoral Science Foundation(2023M740774)Guangdong Provincial People’s Hospital,Postdoctoral Research Launch Fund(BY012022017)。
文摘Epidemiological studies have indicated that branched-chain amino acids(BCAAs)increased and gut microbiota disordered in type 2 diabetes mellitus(T2DM).This study aimed to investigate the mechanism of Lactiplantibacillus plantarum strain 84-3(Lp84-3)combined with Staphylococcus aureus bacteriophage on ameliorating T2DM.Here we perform a case-control study and identify that Staphylococcus_phage was inversely correlated with fasting blood glucose(FBG).It revealed that Lp84-3 could inhibit the growth of S.aureus,and Lp84-3 contains BCAAs degradation enzymes in its genome.Furthermore,Lp84-3 alone or combined with S.aureus bacteriophage interventions can improve blood glucose,insulin resistance,triglycerides,interleukin-1β,tumor necrosis factor-α(TNF-α),BCAAs,and acetyllactate synthase(ALS)in db/db mice.Lp84-3 and S.aureus bacteriophage decreased S.aureus,Malacoplasma iowae,and Oscillibacter sp.,and increased some beneficial such as L.plantarum and Muribaculaceae bacterium.Transcriptomic analyses revealed that Lp84-3 and S.aureus bacteriophage activated the PI3K/AKT/GLUT4 signaling pathway and upregulated key genes of Il22,Hgf,Col6a1,Gh,Itga10,Fgf23,and Prl involved in glucose metabolism in hypothalamus.Collectively,Lp84-3 and S.aureus bacteriophage alleviate T2DM by modulating gut microbiota and enhancing glucose metabolism in hypothalamus,supporting its potential use as a promising functional compound microecological agent for alleviating T2DM.
文摘BACKGROUND Gastric cancer(GC)is a widespread malignancy and associated with high rates of morbidity and mortality worldwide.AIM To examine the functional role of long non-coding RNAs small nucleolar RNA host gene 5(SNHG5)and its regulation of miR-92a-3p and B-cell translocation gene 2(BTG2)in GC progression.METHODS Quantitative reverse transcription PCR and western blot analysis determined the expression of SNHG5,miR-92a-3p,and BTG2 in GC and adjacent non-neoplastic mucosa.Dual-luciferase assays demonstrated interactions of SNHG5 with miR-92a-3p and BTG2.AGS cells were transfected with SNHG5 overexpression and miR-92a-3p knockdown models.Various assays,including CCK-8,colony formation,scratch wound healing,and Transwell assays,were used to determine cell proliferation and migration.An experimental model of a xenograft mouse was used to determine in vivo tumor growth.At the same time histological changes were evaluated by hematoxylin and eosin staining,with western blot analysis used to evaluate signaling pathway protein expression.RESULTS BTG2 and SNHG5 were downregulated in GC tissues,and miR-92a-3p was upregulated.Overexpression of SNHG5 or knockdown of miR-92a-3p reduced GC cell proliferation and migration,and increased BTG2 expression while decreasing PI3K/AKT signaling activity.The dual-luciferase assays demonstrated direct binding of miR-92a-3p to SNHG5 and BTG2.Tumor volume and weight were significantly reduced in mice transplanted with AGS cells treated with miR-92a-3p inhibitor or SNHG5 overexpression compared with control AGS cells.Hematoxylin and eosin staining revealed that treated tumors exhibited degenerative characteristics,including irregular morphology and nucleolysis.CONCLUSION LncRNA SNHG5 inhibited GC cell growth and migration by modulating the PI3K/AKT pathway via the miR-92a-3p/BTG2 axis.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金Supported by National Natural Science Foundation of China,No.82205025,No.82374355 and No.82174293Subject of Jiangsu Province Hospital of Chinese Medicine,No.Y21023Forth Batch of Construction Program for Inheritance Office of Jiangsu Province Famous TCM Experts,No.[2021]7.
文摘BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
基金supported by the Jiangsu Province’s Outstanding Medical Academic Leader Program [CXTDA2017029]the Jiangsu Provincial Key Medical Discipline [ZDXK202249].
文摘Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN lowexpression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA.Results Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model(25 and 10 μmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression.Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels.Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.
文摘Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)remain unexplored.Methods:Initially,The Cancer Genome Atlas(TCGA)based Gene Expression Profiling Interactive Analysis(GEPIA)database (http:/gepia.cancer-pku.cn/)was used to analyze the prognostic relevance of DARS2 expression in LUAD.Further,cell counting kit(CCK)8,immunostaining,and transwell invasion assays in LUAD cell lines in vitro,as well as DARS2 silence on LUAD by tumorigenicity experiments in wivo in nude mice,were performed.Besides,we analyzed the expression levels of p-PI3K(phosphorylated Phosphotylinosital3 kinase),PI3K,AKT(Protein Kinase B),p-AKT(phosphorylated Protein Kinase B),PCNA(proliferating cell nudear antigen),cleaved-caspase 3,E cadherin,and N-cadherin proteins using the Westem blot analysis.Results:LUAD tissues showed higher DARS2 expression compared to normal tissues.Upregulation of DARS2 could be related to Tumor-Node-Metastasis(TNM)stage,high lymph node metastasis,and inferior prognosis.DARS2 silence decreased the proliferation,migration,and invasion abilities of LUAD cells.In addition,the DARS2 downregulation decreased the PCNA and N-cadherin expression and increased cleaved:caspase 3 and E cadherin expressions in LUAD cells,coupled with the inactivation of the PI3K/AKT signaling pathway.Moreover,DARS2 silence impaired the tumonigenicity of LUAD in vivo.Interestingly,let:7b-5p could recognize DARS2 through a complementary sequence.Mechanistically,the increased let 7b 5p expression attenuated the promo oncogenic action of DARS2 during LUAD progression,which were inversely correlated to each other in the LUAD tssues Conclusion:In summary,let 7b-5p,downregulated DARS2 expression,regulating the progression of LUAD cells by the PI3K/AKT signaling pathway.