期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Antifungal Activity of Oleoresin and Fractions of Pinus elliottii Engelm and Pinus tropicalis against Phytopathogens
1
作者 Gessica Andrade Fariza Abrao +5 位作者 Patrick Silva Sergio Ricardo Ambrosio Rodrigo Cassio Sola Veneziani Wilson Roberto Cunha Regina Helena Pires Carlos Henrique G.Martins 《American Journal of Plant Sciences》 2014年第26期3898-3903,共6页
Microorganism resistance to the existing products is yet another difficulty that agriculturalists have to deal with. In this context, the search for new agricultural products that can fight phytopathogens has become i... Microorganism resistance to the existing products is yet another difficulty that agriculturalists have to deal with. In this context, the search for new agricultural products that can fight phytopathogens has become increasingly important. Plants have played an important role in this process, because they can serve as a source of new compounds for drug discovery. Plants belonging to the genus Pinus produce an oleoresin that protects the plant against herbivores and pathogens. With a view to developing products that can combat fungal pathogens without harming the environment, this work aimed to evaluate the antifungal activity of the oleoresins and fractions of Pinus elliottii Engelm and Pinus tropicalis against phytopathogens. The methodology based on NCCLS M38-A standards aided antifungal activity assessment. The microdilution method helped to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC). The oleoresins of P. elliottii and P. tropicalis afforded the most significant results—they displayed fungicidal activity against all the tested species. MIC values were promising, especially the MIC of the oleoresin of P. elliottii against S. rolfsii (1.95 μg·mL-1). The MIC values of the oleoresins of P. elliottii and P. tropicalis ranged from 1.95 to 1000 μg·mL-1 and from 31.25 to 250 μg·mL-1, respectively. Fraction PT2 of P. tropicalis furnished the best results among all the assayed fractions: MIC values lay between 125 and 500 μg·mL-11. In conclusion, the oleoresin of P. tropicalis is a promising source of new antifungal agents for application in the treatment of phytopathogenic infections. 展开更多
关键词 Pinus elliottii Pinus tropicalis phytopathogens Antifungal Activity OLEORESIN
暂未订购
Synergistic Effect of Zinc Oxide,Magnesium Oxide and Graphene Nanomaterials on Fusarium oxysporum-Inoculated Tomato Plants
2
作者 Alejandra Sánchez-Reyna Yolanda González-García +3 位作者 Angel Gabriel Alpuche-Solís Gregorio Cadenas-Pliego Adalberto Benavides-Mendoza Antonio Juárez-Maldonado 《Phyton-International Journal of Experimental Botany》 2025年第7期2097-2116,共20页
Tomato is an economically important crop that is susceptible to biotic and abiotic stresses,situations that negatively affect the crop cycle.Biotic stress is caused by phytopathogens such as Fusarium oxysporum f.sp.ly... Tomato is an economically important crop that is susceptible to biotic and abiotic stresses,situations that negatively affect the crop cycle.Biotic stress is caused by phytopathogens such as Fusarium oxysporum f.sp.lycopersici(FOL),responsible for vascular wilt,a disease that causes economic losses of up to 100%in crops of interest.Nanomaterials represent an area of opportunity for pathogen control through stimulations that modify the plant development program,achieving greater adaptation and tolerance to stress.The aim of this study was to evaluate the antimicrobial capacity of the nanoparticles and the concentrations used in tomato plants infected with FOL.To this end,a two-stage experiment was conducted.In Stage 1,the effects of the nanomaterials(Graphene nanoplatelets[GP],Zinc oxide nanoparticles[ZnO NPs],Magnesium oxide nanoparticles[MgO NPs])were evaluated both alone and in combination to determine the most effective method of controlling FOL-induced disease.In Stage 2,the most effective combination of nanomaterials(ZnO+GP)was evaluated at four concentrations ranging from 100 to 400 mg L^(−1).To evaluate the effectiveness of the treatments,we determined the incidence and severity of the disease,agronomic parameters,as well as the following biochemical variables:chlorophylls,β-carotene,vitamin C,phenols,flavonoids,hydrogen peroxide,superoxide anion,and malondialdehyde.The results show various positive effects,highlighting the efficiency of the ZnO+GP at 200mg L^(−1),which reduced the severity by approximately 20%,in addition to increasing agronomic variables and reducing reactive oxygen species.Moreover,the results show that the application of these nanomaterials increases vegetative development and defense against biotic stress.The use of nanomaterials such as zinc oxide,magnesium oxide and graphene can be an effective tool in the control of the severity of Fusarium oxysporum disease. 展开更多
关键词 Antioxidant system BIOSTIMULATION biotic stress NANOTECHNOLOGY phytopathogens stress biomarkers
在线阅读 下载PDF
Trichoderma gamsii strain TC959 with comprehensive functions to effectively reduce seedling damping-off and promote growth of pepper by direct and indirect action mechanisms
3
作者 Hengxu Wang Hao Hu +2 位作者 Tianyou Zhao Zhaoqing Zeng Wenying Zhuang 《Journal of Integrative Agriculture》 2025年第10期3926-3940,共15页
Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.However,the antagonistic mechanism of certain strains primarily operates through direct ... Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.However,the antagonistic mechanism of certain strains primarily operates through direct action.This study aims to explore an effective strain with comprehensive capabilities and elucidate its practical viability and action mechanism.Trichoderma gamsii strain TC959,exhibiting robust antagonistic and plant growth-promoting properties,was identified.The strain directly inhibits plant pathogen through the production of secondary metabolites,siderophores,and chitinase/xylanase,while promotes plant growth via indole-3-acetic acid/gibberellin release.Additionally,the strain activates induced systemic resistance by enhancing the chlorophyll a/b ratio and jasmonic acid content in pepper seedlings through root colonization,leading to elevated defense-related gene expression,antioxidant enzyme activity,and indole-3-acetic acid/gibberellin production.These mechanisms collectively enhance disease resistance and promote plant growth.Moreover,TC959 demonstrates superior resistance to oxidation and chemical fungicides,facilitating strain viability maintenance and ensuring healthy pepper seedling development.The study concludes that strain TC959 exhibits significant biocontrol potential and comprehensive functions against pepper damping-off disease,warranting further practical applications. 展开更多
关键词 biocontrol potential disease resistance of plant induced systemic resistance inhabitation effects to phytopathogens sensitivity to chemical fungicides TRICHODERMA
在线阅读 下载PDF
Influence of Bacillus Strains on Biophysiological Processes in Plants
4
作者 Khidirova Ugiloy Sulton Makhmud Kizi 《American Journal of Plant Sciences》 2025年第1期28-34,共7页
The article presents data on the screening of rhizobacteria and active isolates isolated from the humus layer of natural humus soils against phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum and their re... The article presents data on the screening of rhizobacteria and active isolates isolated from the humus layer of natural humus soils against phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum and their resistance to various concentrations of NaCl (0%, 1%, 5%, 7%, 10%). The results of studies on the synthesis of phytohormones with the properties of microorganisms that enhance plant growth and development are presented. Antagonistically active bacterial strains that grew even at high salt concentrations were identified using MALDI-TOF analysis. They were identified as XD 4.3 Bacillus subtilis and XDN6 Bacillus cereus, respectively. 展开更多
关键词 Soil RHIZOBACTERIA PHYTOPATHOGEN Antifungal Drug Indole-3-Acetic Acid (IAA)
在线阅读 下载PDF
A missense mutation in the Sin3 subunit of Rpd3 histone deacetylase complex bypasses the requirement for FNG1 in wheat scab fungus
5
作者 Huaijian Xu Ruoxuan Jiang +5 位作者 Xianhui Fu Qinhu Wang Yutong Shi Xiaofei Zhao Cong Jiang Hang Jiang 《Journal of Integrative Agriculture》 2025年第8期3087-3094,共8页
The Rpd3 histone deacetylase complex is a multiple-subunit complex that mediates the regulation of chromatin accessibility and gene expression.Sin3,the largest subunit of Rpd3 complex,is conserved in a broad range of ... The Rpd3 histone deacetylase complex is a multiple-subunit complex that mediates the regulation of chromatin accessibility and gene expression.Sin3,the largest subunit of Rpd3 complex,is conserved in a broad range of eukaryotes.Despite being a molecular scaffold for complex assembly,the functional sites and mechanism of action of Sin3 remain unexplored.In this study,we functionally characterized a glutamate residue(E810)in Fg Sin3,the ortholog of yeast Sin3 in Fusarium graminearum(known as wheat scab fungus).Our findings indicate that E810 was important for the functions of Fg Sin3 in regulating vegetative growth,sexual reproduction,wheat infection,and DON biosynthesis.Furthermore,the E810K missense mutation restored the reduced H4 acetylation caused by the deletion of FNG1,the ortholog of the human inhibitor of growth(ING1)gene in F.graminearum.Correspondingly,the defects of the fng1 mutant were also partially rescued by the E810K mutation in Fg Sin3.Sequence alignment and evolutionary analysis revealed that E810 residue is well-conserved in fungi,animals,and plants.Based on Alphafold2 structure modeling,E810 localized on the Fg Rpd3–Fg Sin3 interface for the formation of a hydrogen bond with Fg Rpd3.Mutation of E810 disrupts the hydrogen bond and likely affects the Fg Rpd3–Fg Sin3 interaction.Taken together,E810 of Fg Sin3 is functionally associated with Fng1 in the regulation of H4 acetylation and related biological processes,probably by affecting the assembly of the Rpd3 complex. 展开更多
关键词 histone acetylation ING protein PHYTOPATHOGEN Rpd3 histone deacetylase complex
在线阅读 下载PDF
Application of inhibitors targeting the typeⅢsecretion system in phytopathogenic bacteria
6
作者 Lu-Lu He Lan-Tu Xiong +5 位作者 Xin Wang Yu-Zhen Li Jia-Bao Li Yu Shi Xin Deng Zi-Ning Cui 《Chinese Chemical Letters》 2025年第4期65-73,共9页
Plant bacterial diseases have infiicted substantial economic losses in global crop,fruit,and vegetable production.The conventional methods for managing these diseases typically rely on the application of antibiotics.H... Plant bacterial diseases have infiicted substantial economic losses in global crop,fruit,and vegetable production.The conventional methods for managing these diseases typically rely on the application of antibiotics.However,these antibiotics often target the growth factors of the pathogenic bacteria,leading to the accumulation and emergence of drug-resistant strains,which exacerbates antibiotic resistance.Innovative methods are urgently needed to treat and prevent the toxicity caused by these pathogenic bacteria.Targeting virulence mechanisms in pathogens is a globally recognized and effective strategy for mitigating bacterial resistance.TypeⅢsecretion system(T3SS)serves as a crucial virulence determinant in Gram-negative pathogens,and its non-essentials for pathogen growth renders it an ideal target.Targeting the T3SS holds significant potential to alleviate selective pressure for resistance mutations in pathogens.Therefore,targeting T3SS in pathogenic bacteria,while preserving their growth,has emerged as a novel avenue for the development of antimicrobial drugs.In recent years,a multitude of small molecular inhibitors targeting T3SS have been identified.This article offers a comprehensive review of T3SS inhibitors in plant pathogens,while also presenting the latest research advancements in this research direction. 展开更多
关键词 Phytopathogenic bacteria Bacterial disease control Virulence factor TypeⅢsecretion system(T3SS) INHIBITORS Agricultural application
原文传递
Bioactive Compounds Recovery from Larrea tridentata by Green Ultrasound- Assisted Extraction
7
作者 Muyideen Olaitan Bamidele Jose Sandoval-Cortes +3 位作者 Maria Liliana Flores-Lopez Olga Berenice Alvarez Perez Monica Lizeth Chavez Gonzalez Cristobal Noe Aguilar 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第11期3091-3107,共17页
Postharvest losses remain a significant challenge,particularly in developing countries that have inadequate infra-structure.Medicinal plants offer an eco-friendly and sustainable solution for managing diseases and pest... Postharvest losses remain a significant challenge,particularly in developing countries that have inadequate infra-structure.Medicinal plants offer an eco-friendly and sustainable solution for managing diseases and pests in agri-cultural systems.These plants are rich in bioactive compounds,such as alkaloids,flavonoids,terpenoids,phenolics,and essential oils,many of which have proven antimicrobial,antifungal,insecticidal,and antioxidant properties.These characteristics make medicinal plants viable candidates for postharvest disease and pest control.Among these,Larrea tridentata(creosote bush)is particularly notable for its bioactive compounds with strong antifungal properties.Their potential applications include agriculture,food preservation,and medicine.This study aimed to evaluate how different solvent mixtures affect the efficiency of ultrasound-assisted extraction,total polyphenol content,antioxidant capacity,and antifungal activity of L.tridentata leaves and stems.Thefindings revealed that the 60%ethanol ultrasound-assisted extract of L.tridentata leaves(ULL 60%)contained the highest concentration of bioactive compounds,including hydrolysable tannins(690.2 mg GAE/100 g)and condensed tan-nins(329.9 mg CE/100 g).All extracts demonstrated notable antioxidant activity in ABTS,DPPH,and FRAP assays,with ethanol-based extracts showing greater antioxidant potential than their aqueous counterparts.In terms of antifungal efficacy,100%ethanol leaf extract exhibited the strongest inhibition against Fusarium oxyspor-um(60.03%),whereas 50%ethanol extract effectively inhibited Alternaria alternata(53.61%).Six major polyphe-nolic compounds were identified using reverse-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry(RP-HPLC-ESI-MS).These include quercetin,luteolin,3,4-dihydrox-yphenylethanol,elenolic acid,nordihydroguaiaretic acid(NDGA),and kaempferide.These compounds are known to have antibacterial,antifungal and antioxidant properties.Thesefindings underscore the potent fungi-static properties of L.tridentata leaf extracts against key phytopathogenic fungi,highlighting their potential as bioactive agents in the formulation of eco-friendly biopesticides. 展开更多
关键词 phytopathogens bioactive compounds desert plants Fusarium oxysporum Alternaria alternata
在线阅读 下载PDF
Phytochemical Analysis and Antifungal Activity of Extracts from Leaves and Fruit Residues of Brazilian Savanna Plants Aiming Its Use as Safe Fungicides 被引量:1
8
作者 Caroline Alves Breda Alessandra Marcon Gasperini +4 位作者 Vera Lucia Garcia Karin Maia Monteiro Giovana Anceski Bataglion Marcos Nogueira Eberlin Marta Cristina Teixeira Duarte 《Natural Products and Bioprospecting》 CAS 2016年第4期195-204,共10页
The increasing demand for safe food without preservatives or pesticides residues has encouraged several studies on natural products with antifungal activity and low toxicity.In this study,ethanolic extracts from leave... The increasing demand for safe food without preservatives or pesticides residues has encouraged several studies on natural products with antifungal activity and low toxicity.In this study,ethanolic extracts from leaves and fruit residues(peel and seeds)of three Brazilian savanna species(Acrocomia aculeata,Campomanesia adamantium and Caryocar brasiliense)were evaluated against phytopathogenic fungi.Additionally,the most active extract was chemically characterized by ESI-MS and its oral acute toxicity was evaluated.Extracts from C.brasiliense(pequi)peel and leaves were active against Alternaria alternata,Alternaria solani and Venturia pirina with minimal inhibitory concentrations between 350 and 1000 lg/mL.When incorporated in solid media,these extracts extended the lag phase of A.alternata and A.solani and reduced the growth rate of A.solani.Pequi peel extract showed better antifungal activity and their ESI-MS analysis revealed the presence of substances widely reported as antifungal such as gallic acid,quinic acid,ellagic acid,glucogalin and corilagin.The oral acute toxicity was relatively low,being considered safe for use as a potential natural fungicide. 展开更多
关键词 Brazilian savanna fruits RESIDUES Natural fungicides phytopathogens
暂未订购
Behavior of the Fungus <i>Colletotrichum gloeosporioides</i>(Penz &Sacc.), Which Causes Bitter Rot in Apples after Harvesting
9
作者 Sideney Becker Onofre Dirlane Antoniazzi 《Advances in Microbiology》 2014年第4期202-206,共5页
The apple is the second most important fruit in Brazil. However, apple cultivars are susceptible to several diseases that can cause losses after harvesting. Bitter rot is caused by the fungus Colletotrichum gloeospori... The apple is the second most important fruit in Brazil. However, apple cultivars are susceptible to several diseases that can cause losses after harvesting. Bitter rot is caused by the fungus Colletotrichum gloeosporioides and is one of the most damaging summer diseases. The goal of this work was to evaluate the behavior of this fungus in four apple cultivars grown in Brazil (Fuji, Gala, Golden and Green) under two treatments: direct inoculation and isolated fungus. The fungus was isolated by taking fragments from infected fruits, which were stored on Potato Dextrose Agar (PDA) in a laboratory. For the direct treatment, the fungus was removed from infected fruits and directly inoculated into healthy fruits. After inoculation, the fruits were kept at room temperature and the halos of degradation were evaluated every 48 hours. The results demonstrated that direct inoculation was more pathogenic, that the Gala cultivar was the most resistant to the pathogen, and that the Golden cultivar was the most susceptible. 展开更多
关键词 Diseases Biotechnology phytopathogens FUNGI Pathology
暂未订购
Recent Achievements in the Bio-control of Orobanche Infesting Important Crops in the Mediterranean Basin 被引量:5
10
作者 A. Evidente M. A. Abouzeid +1 位作者 A. Andolfi A. Cimmino 《Journal of Agricultural Science and Technology(A)》 2011年第4X期461-483,共23页
Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe ... Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe yield reduction of many important crops. There are only very few herbicides which are able to selectively control broomrapes and different approaches have been put forward to develop natural product based pesticides to control Orobanche. Several phytopathogenic fungi were evaluated for their use as potential mycoherbicide and for ability to produce toxic metabolites which could be applied as herbicides. Using the alternative approach "suicidal germination", interesting results were obtained by testing two microbial metabolites (fusicoccins and ophiobolin A) especially with Orobanche species whose germination is not induced by the synthetic strigolactone GR24. From pea root exudates, peagol and peagoldione, close related to strigolactones, and three polyphenols, named peapolyphenols A-C, together with already well known polyphenol and a chalcone, were isolated. They showed a selective stimulation of Orobanche seed germination with the last two and peapolyphenol A showing a specific stimulatory activity on O. foetida. This review describes the most recent results achieved on Orobanche bio-control, mainly focusing on those regarding O. ramosa, O. crenata and O. foetida. 展开更多
关键词 BROOMRAPE O. crenata O. ramosa biological control phytopathogenic fungi phytotoxic metabolites suicidal seedgermination.
在线阅读 下载PDF
New antibacterial depsidones from an ant-derived fungus Spiromastix sp.MY-1 被引量:1
11
作者 GUO Zhi-Kai HU Wen-Yong +6 位作者 ZHAO Li-Xing CHEN Yan-Chi LI Sui-Jun CHENG Ping GE Hui-Ming TAN Ren-Xiang JIAO Rui-Hua 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2022年第8期627-632,共6页
Six new(1–6)and seven known depsidones(7–13)were isolated from the culture of an ant(Monomorium chinensis)-derived fungus Spiromastix sp.MY-1.Their structures were elucidated by extensive spectroscopic analysis incl... Six new(1–6)and seven known depsidones(7–13)were isolated from the culture of an ant(Monomorium chinensis)-derived fungus Spiromastix sp.MY-1.Their structures were elucidated by extensive spectroscopic analysis including high resolution MS,1D and 2D NMR data.The new bromide depsidones were obtained through supplementing potassium bromide in the fermentation medium of Spiromastix sp.MY-1.All isolated compounds showed various bioactivities against the tested phytopathogenic bacteria.Particularly,new bromide compound 4,named spiromastixone S,exhibited the strongest activity against Xanthomonas oryzae pv.oryzae with a MIC value of 5.2μmol·^L(−1). 展开更多
关键词 FUNGUS Spiromastix sp Depsidones Phytopathogenic bacteria ANTIBACTERIAL
原文传递
<i>Bacillus subtilis Strains</i>with Antifungal Activity against the Phytopathogenic Fungi 被引量:2
12
作者 Ayslu Mirkasimovna Mardanova Guzel Fanisovna Hadieva +5 位作者 Marat Tafkilevich Lutfullin Irina Valer’evna Khilyas Leyla Farvazovna Minnullina Adelya Gadelevna Gilyazeva Lidiya Mikhailovna Bogomolnaya Margarita Rashidovna Sharipova 《Agricultural Sciences》 2017年第1期1-20,共20页
Bacillus strains isolated from the rhizosphere soil of potato roots were evaluated for the potential antagonistic activity against fungal pathogens in vitro and in vivo. Two bacterial isolates were identified as new B... Bacillus strains isolated from the rhizosphere soil of potato roots were evaluated for the potential antagonistic activity against fungal pathogens in vitro and in vivo. Two bacterial isolates were identified as new Bacillus subtilis strains by 16S rRNA and GyrB gene sequencing and were designated GM2 and GM5, respectively. Strains were characterized by their ability to inhibit growth of a number of phytopathogenic fungi. It was shown that GM5 strain inhibited growth of phytopathogenic fungi more effectively than GM2 strain. Both strains were capable of producing a number of hydrolytic enzymes as well as antimicrobial metabolites (ammonia and HCN). In addition, GM2 strain also produced siderophores. Four genes encoding antimicrobial peptides were identified in the genome of GM2 strain: ituC, bmyB, bacA and srfA. Genome of GM5 contained two genes encoding for antimicrobial peptides, srfA and fenD. Purified lipopeptide fraction from GM5 but not from GM2 strain was able to control Fusarium solani spread in the plate assay. Furthermore, Bacillus subtilis strain GM2 promoted growth of wheat but only GM5 strain was able to protect wheat seedlings from Fusarium oxysporum infection. 展开更多
关键词 Bacillus SUBTILIS FUSARIUM Phytopathogenic Fungi ANTAGONISTIC Activity Antimicrobial Peptides
暂未订购
Antifungalmycin,an antifungal macrolide from Streptomyces padanus 702 被引量:1
13
作者 Yi-Fen WANG Sai-Jin WEI +2 位作者 Zhi-Ping ZHANG Tong-He ZHAN Guo-Quan TU 《Natural Products and Bioprospecting》 CAS 2012年第1期41-45,共5页
Two polyene macrolide antibiotics:antifungalmycin(1)and fungichromin(2)were isolated from the culture mycelia of Streptomyces padanus 702 via bioactivity-guided fractionation using various chromatographic procedures.T... Two polyene macrolide antibiotics:antifungalmycin(1)and fungichromin(2)were isolated from the culture mycelia of Streptomyces padanus 702 via bioactivity-guided fractionation using various chromatographic procedures.Their structures were elucidated on the basis of spectral analysis,and 1 is a new polyene macrolide.Compounds 1 and 2 showed significant inhibition against Gibberella zeae with EC_(50)values of 26.71 and 2.21μg/mL,Fusicoccum sp.(plantain head blight)with EC_(50)values of 23.4 and 3.17μg/mL,Mucor ssp.8894 with EC_(50)values of 28.80 and 2.11μg/mL,Ustilaginoidea virens with EC_(50)values of 26.72 and 0.21μg/mL,respectively.This shows that the microbial secondary metabolites 1 and 2 have the potential to be developed as agricultural fungicides for use against G.zeae,Fusicoccum sp.,Mucor ssp.8894,and U.virens. 展开更多
关键词 antifungalmycin Streptomyces padanus 702 polyene macrolide BIOCONTROL antifungal activity PHYTOPATHOGEN
在线阅读 下载PDF
Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents 被引量:1
14
作者 Wei Chen Yuxin Li +2 位作者 Yunyun Zhou Yi Ma Zhengming Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2160-2162,共3页
Acetohydroxyacid synthase(AHAS) was considered as a promising target for antifungal agents.Herein,three series of novel sulfonylureas(SUs) 9-11 containing aromatic-substituted pyrimidines were designed and synthesized... Acetohydroxyacid synthase(AHAS) was considered as a promising target for antifungal agents.Herein,three series of novel sulfonylureas(SUs) 9-11 containing aromatic-substituted pyrimidines were designed and synthesized according to pharmacophore-combination and bioisosterism strategy.The in vitro fungicidal activities against ten phytopathogenic fungi indicated that most of the title compounds exhibited broad-spectrum and excellent fungicidal activities.Based on the preliminary fungicidal activities,a CoMFA model was constructed and the 3 D-QSAR analysis indicated that either a bulky group around the 5-position of the pyrimidine ring or electropositive group around the 2-position of the benzene ring would be favour to fungicidal activities.In order to study interaction mechanism,10 k was automatically docked into yeast AHAS and it further indicated that bearing bulky groups-aryl at the pyrimidine ring was critical to enhance antifungal activities.It revealed that the antifungal activity of derivatives 9-11 probably results from the inhibition of fungal AHAS.Thus,the present results strongly showed that SUs should be considered as lead compounds or model molecules to develop novel antiphyt o pathogenic fungal agents. 展开更多
关键词 SULFONYLUREA Phytopathogenic fungi Antifungal activity Substituted pyrimidine 3D-QASR
原文传递
PCR-Mediated Detection of Endophytic and Phytopathogenic Fungi from Needles of the Japanese Black Pine, <i>Pinus thunbergii</i> 被引量:1
15
作者 Junichi Kihara Makoto Ueno Sakae Arase 《Open Journal of Forestry》 2015年第4期431-442,共12页
A specific and sensitive polymerase chain reaction (PCR) assay based on the internal transcribed spacer (ITS) region of rDNA sequences was developed to detect endophytic and phytopathogenic fungi from needles of the J... A specific and sensitive polymerase chain reaction (PCR) assay based on the internal transcribed spacer (ITS) region of rDNA sequences was developed to detect endophytic and phytopathogenic fungi from needles of the Japanese black pine, Pinus thunbergii. Sequences of the ITS regions of Lophodermium conigenum, Lecanosticta acicola, Pestalotiopsis neglecta, Rhizosphaera kalkhoffii, and Septorioides pini-thunbergii were compared, and each specific primer pair for these species was designed. First, the designed primer pairs were tested for their specificity to detect each species. A PCR product was amplified only each combination of species and its specific primer pair, confirming the specificity of the designed primer pairs. These primer pairs were also tested on DNA extracted from the needles of P. thunbergii. The PCR products were amplified not only in needles with lesions but also in healthy needles without symptoms. Furthermore, several endophytic and phytopathogenic fungi could be simultaneously detected from the same region in a needle. The PCR-mediated detection method developed in this study will be a valuable tool for the detection of the endophytic and phytopathogenic fungi, not only as a rapid diagnostic tool for early detection but also for monitoring variations in both the quality and quantity of the endophytic and phytopathogenic fungi in needles in Japanese black pines. 展开更多
关键词 Phytopathogenic FUNGI ENDOPHYTIC FUNGI Pinus thunbergii JAPANESE Black Pine PCR-Mediated Detection
暂未订购
Isolation and Screening of Silicate Bacteria from Various Habitats for Biological Control of Phytopathogenic Fungi
16
作者 Zakira Naureen Muhammad Aqeel +5 位作者 Muhammad Nadeem Hassan Syed Abdullah Gilani Nahla Bouqellah Fazal Mabood Javid Hussain Fauzia Y. Hafeez 《American Journal of Plant Sciences》 2015年第18期2850-2859,共10页
Silicate solubilizing bacteria (SSB) can play an efficient role in soil by solubilizing insoluble forms of silicates. In addition to this some SSB can also solubilize potassium and phosphates, hence increasing soil fe... Silicate solubilizing bacteria (SSB) can play an efficient role in soil by solubilizing insoluble forms of silicates. In addition to this some SSB can also solubilize potassium and phosphates, hence increasing soil fertility and enhancing plant defense mechanisms. A total of 111 bacterial strains were isolated from various habitats of Pakistan and screened for solubilization of silicate, phosphate and potassium on respective media. Out of these, 35 bacterial isolates were capable of solubilizing either silicate, phosphate or potassium. Amongst these 7 bacterial isolates were capable of solubilizing all three minerals tested. The highest silicate (zone diameter 54 mm) and phosphate solubilization (zone diameter 55 mm) was observed for bacterial isolate NR-2 while the highest potassium solubilization was observed for NE-4b (zone diameter 11 mm). Dual culture antagonistic assays were carried out by using these bacterial isolates against four plant pathogenic fungi Magnaporthae grisae, Rhizoctonia solani, Altarnaria alternata and Macrophomina pheasolina. Mean zone of inhibition of these bacterial isolates against the four pathogenic fungi ranged between 4 mm to 39 mm. The largest zone of inhibition against all four bacterial strains was recorded for bacterial isolate NR-2 followed by NE-4b. These strains will be further investigated for their plant growth promoting activities in the future. 展开更多
关键词 SILICATE Solubilizing BACTERIA BIOCONTROL Phytopathogenic FUNGI
暂未订购
Analogs of Antifungal Indoles Isolated from Aporpium Caryae with Activity Against Sudden-Death Syndrome of Soybean
17
作者 Brenda Bertinetti Mercedes Scandiani Gabriela Cabrera 《American Journal of Plant Sciences》 2011年第2期245-254,共10页
Based on the precedent discovery of a weak antifungal indole isolated from Aporpium caryae, which increased its activity when changing the N-alkyl chain, nineteen N-alkyl indoles, with alkyl chains from one to ten car... Based on the precedent discovery of a weak antifungal indole isolated from Aporpium caryae, which increased its activity when changing the N-alkyl chain, nineteen N-alkyl indoles, with alkyl chains from one to ten carbons and one or two hydroxyls, one amine or bromine functional groups, were prepared and fully characterized by spectroscopic methods. The aim of this study is the search for new synthetic agrochemical leads derived from natural products. The antifungal activity of the synthesized compounds against three fungal strains was measured in vitro. Six compounds presented good activity against Fusarium virguliforme, the causal agent of sudden-death syndrome (SDS) in soybean, in a bioautography assay. Four of them were tested in a germination test and in a greenhouse experiment. All tested compounds, applied as seed treatment, showed antifungal properties being effective to control SDS when there was low level of fungal contamination. Results indicate that some of the tested compounds are acting as growth inhibitors and represent new leads for the treatment of SDS for which no specific treatment has been previously reported. 展开更多
关键词 N-Alkyl INDOLE SOYBEAN PHYTOPATHOGEN Fusarium Virguliforme Sudden-Death SYNDROME
暂未订购
Effect of 4% glycerol and low aeration on result of expression in <i>Escherichia coli</i>of Cin3 and three <i>Venturia inaequalis</i>EST’s recombinant proteins
18
作者 Taha H. Al-Samarrai William T. Jones +2 位作者 Dawn Harvey Christopher A. Kirk M. Templtone 《American Journal of Molecular Biology》 2013年第1期1-9,共9页
The phytopathogenic fungus Venturia inaequalis causes scab of apple. Once this fungus penetrates the plant surface, it forms a specialized body called a stroma between the inner cuticle surface and the epidermal cell ... The phytopathogenic fungus Venturia inaequalis causes scab of apple. Once this fungus penetrates the plant surface, it forms a specialized body called a stroma between the inner cuticle surface and the epidermal cell wall. A novel Venturia inaequalis 5704 (Cin3) and three expressed sequence tags (ESTs);38, 6987, and 4010 are strongly up-regulated in the early stages of infection. The CIN3 and three ESTs using two vectors pMAL-c2 and pET 21 were expressed in Escherichia coli. Recombinant proteins expression, solubility and yields were analyzed. 38, 5704 (Cin3) and 6987 re- combinant proteins were expressed in soluble form and while 4010 was expressed in inclusion bodies. Re- solution on native-PAGE, the recombinant proteins;38, 5704 (Cin3), 6987 were shown to be present in dimmer, tetramer and polymer. A method was de- veloped, consisting of induction of expression at va- rious temperatures, and using enriched broth with 4% glycerol together with slow shaking, led to a decrease in concentration of nascent polypeptide and production of soluble recombinant proteins of;38, 5704 (Cin3), 6987 and 4010. Resolution on native- PAGE, the recombinant proteins were shown to be present as monomer. 展开更多
关键词 Venturia inaequalis Expressed Sequence Tag (ESTs) Phytopathogenic FUNGUS APPRESSORIUM A Stroma
暂未订购
Antiviral Effect of Ribonuclease from <i>Bacillus pumilus</i>against Phytopathogenic Rna-Viruses
19
作者 Margarita Sharipova Annett Rockstroh +5 位作者 Nelly Balaban Ayslu Mardanova Anna Toymentseva Anastasiya Tikhonova Semen Vologin Zenon Stashevsky 《Agricultural Sciences》 2015年第11期1357-1366,共10页
Background: Viruses can cause different diseases in plants. To prevent viral infections, plants are treated with chemical compounds and antiviral agents. Chemical antiviral agents usually have narrow specificity, whic... Background: Viruses can cause different diseases in plants. To prevent viral infections, plants are treated with chemical compounds and antiviral agents. Chemical antiviral agents usually have narrow specificity, which limits their wide application. Alternative antiviral strategy is associated with the use of microbial enzymes, which are less toxic and are readily decomposed without accumulation of harmful substances. The aim of this work is to study the effect of Bacillus pumilus ribonuclease on various phytopathogenic viruses with specific focus on the ability of enzyme to eliminate them from plant explants in vitro. Materials and methods: Extracellular ribonuclease of B. pumilus is tested as an antiviral agent. To study the antiviral effect of RNase, depending on concentration and the time of application several plant-virus model systems are used. Virus detection is conducted by serological testing and RT-PCR. Results: Bacillus pumilus ribonuclease possesses antiviral activity against plant Rna-viruses RCMV (red clover mottle virus), PVX (Potato Virus X) and AMV (Alfalfa Mosaic Virus). The maximum inhibitory effect against actively replicating viruses is observed when plants are treated with the enzyme in the concentration of 100 ug/ml prior to infection. In case of local necrosis ribonuclease in the concentration of 1 ug/ml completely inhibits the development of RCMV virus on bean plants. The enzyme is able to penetrate plants and inhibit the development of viral infection, inhibiting effect for untreated surfaces decreased on average for 20%. It is also found that B. pumilus ribonuclease protects apical explants of sprouts of potato tubers from PVM and PVS viruses. Conclusion: B. pumilus ribonuclease possesses antiviral activity against plant Rna-viruses and produces viruses-free plants in the apical meristem culture. 展开更多
关键词 Bacillus Pumilus RIBONUCLEASE Phytopathogenic Rna-Viruses Inhibition VIRUS-FREE APICAL
暂未订购
Dispersion of the Bacterium Xylella fastidiosa in Portugal
20
作者 Carla Carvalho-Luis JoséManuel Rodrigues Luís M.Martins 《Journal of Agricultural Science and Technology(A)》 2022年第1期35-41,共7页
After the first detection of the gram-negative bacterium,Xylella fastidiosa multiplex in Portugal,in January 2019,a“Demarcated Area”was delimited and an“Action Plan”to control the pathogen has been developed.It is... After the first detection of the gram-negative bacterium,Xylella fastidiosa multiplex in Portugal,in January 2019,a“Demarcated Area”was delimited and an“Action Plan”to control the pathogen has been developed.It is considered one of the greatest threats to plant health worldwide and leads to loss of forests vitality and productivity.The current study was developed till June 2020,with the objective to understand the dimension of the issue worldwide and in Portugal,analyzing the state-of-the-art on the biology,dispersion,symptoms,control and risks associated with this bacterium(Research Phase).In the Prospecting Phase,we collected 5 branches with 5-8 leaves,from the four quadrants of the tree,wrapping and labeling them-so 2,261 samples were collected and sent to the laboratory for analysis.It was possible to determine that the two initial outbreaks were not an isolated case,as 107 additional outbreaks were detected in other places,revealing a much more worrying panorama,requiring further analysis on the real impact of this bacterial strain on the natural environment.By the end of this study the demarcated area covered about 62,000 ha.The most affected species was lavender with 30%of positive outbreaks,followed by gorse with 22%,and rosemary with 11%.Spread of Phillaenus spumarius and X.fastidiosa indicates that insect vector and transport links appear to be dispersal facilitators together with Douro River.As eradication is unfeasible to achieve in the coming years,containment will be the most appropriate strategy. 展开更多
关键词 PHYTOPATHOGEN forest plant health xylem-limited BACTERIA Xylella fastidiosa multiplex biotic stressors Demarcated Area
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部