All-inorganic reflective phosphor-in-glass film(PiGF) converter has garnered widespread attentions for high brightness laser-driven white lighting,while its poor color quality and low luminescence stability have been ...All-inorganic reflective phosphor-in-glass film(PiGF) converter has garnered widespread attentions for high brightness laser-driven white lighting,while its poor color quality and low luminescence stability have been inevitable roadblocks.Herein,the bicolor PiGF containing green-emitting Y3Al3.08Ga1.92O12:Ce3+(YAGG) and red-emitting CaAlSiN_(3):Eu^(2+)(CASN) phosphors bonded on Al2O3substrate was prepared for enabling high color quality laser-driven white lighting in reflective configuration.The bicolor PiGF has high quantum efficiency and good structure stability.By optimizing the CASN content,PiGF thickness and Al_(2)O_(3) content,the reflective bicolor PiGF based white laser diode(LD)displays good luminescence performance with a luminous flux of 451.5 lm and a luminous efficacy of142.3 lm/W and high color quality with a color rendering index(CRI) of 85.3 and a correlated color temperature(CCT) of 5177 K under the incident laser power of 3.15 W,and still has excellent luminescence and color stabilities(CRI and CCT) under the continuous laser excitation of 5.61 W,attributed to the good thermal conductivity and high reflectivity of Al_(2)O_(3) substrate and scattering enhancement effect of Al_(2)O_(3) particles.It can be foreseen that the reflective bicolor PiGF converter provides a promising strategy for enabling high quality laser-driven white lighting.展开更多
The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalys...The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalysis systems.Chiral phosphoric acids(CPA)have been widely acknowledged as versatile chiral organocatalysts since it was first discovered in 2004,finding application in catalyzing diverse asymmetric reactions.A comprehensive overview of recent advances in CPA-catalyzed asymmetric electrophilic amination reactions using different N-electrophilic reagents,including azo reagents,aryldiazonium salts,and imine derivatives,is presented.Furthermore,insights into future developments in this field are offered.展开更多
Bifunctional applications in solid state lighting and optical thermometry are attractive in the optical field.Despite Eu^(3+)doped phosphors are widely used in white-LEDs,phosphors with high temperature sensitivity re...Bifunctional applications in solid state lighting and optical thermometry are attractive in the optical field.Despite Eu^(3+)doped phosphors are widely used in white-LEDs,phosphors with high temperature sensitivity remain rare.Herein,NaLnTe_(2)O_(7):Eu^(3+)(Ln=Y and Gd)phosphors were synthesized using a rapid microwave-assisted solidstate(MASS)method to fulfill these applications.Under 395 nm excitation,NaLnTe_(2)O_(7):Eu^(3+)exhibit the characteristic ^(5)D_(0)→^(7)F_(J)(J=1–4)transitions of Eu^(3+).Substituting Gd^(3+) for Y^(3+) enhances the luminescence by approximately 2.42 times.Structural analyses reveal that the improved luminescent properties are attributed to the more distorted and appropriate coordination environment in NaGdTe_(2)O_(7):Eu^(3+).Finally,white-LEDs using NaGdTe_(2)O_(7):Eu^(3+)as the red-component produce white light with high Ra of 89.Furthermore,the distinct thermal responses of the ^(5)D_(0)→^(7)F_(J) transitions enable NaLnTe_(2)O_(7):Eu^(3+)to function as temperature sensors via fluorescence intensity ratio(FIR)strategy.NaYTe_(2)O_(7):Eu^(3+)possesses the maximum relative/absolute sensitivity of 1.45%/15.93%K^(-1),whereas NaGdTe_(2)O_(7):Eu^(3+)achieves the maximum relative/absolute sensitivity of 1.53%/30.24% K^(-1).This work highlights the significance of cationic substitution in enhancing luminescent properties for multifunctional applications.展开更多
Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material ...Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.展开更多
A blue-red dual-emitting phosphor,Na_(3)KMg_(7)(PO_(4))_(6):Eu^(2+),Mn^(2+)was developed in this study.Eu^(2+)acts as a sensitizer ion in Na_(3)KMg_(7)(PO_(4))_(6):Mn^(2+),which significantly improves the undesirable ...A blue-red dual-emitting phosphor,Na_(3)KMg_(7)(PO_(4))_(6):Eu^(2+),Mn^(2+)was developed in this study.Eu^(2+)acts as a sensitizer ion in Na_(3)KMg_(7)(PO_(4))_(6):Mn^(2+),which significantly improves the undesirable luminous efficiency of Mn^(2+).The energy transfer between Eu^(2+)and Mn^(2+)significantly boosts both internal quantum efficiency(IQE)and external quantum efficiency(EQE)of the phosphor,achieving values of 72.5%and 42.6%,respectively.Additionally,the phosphor demonstrates exceptional thermal stability,at150℃.maintaining 71.49%of its initial emission intensity.The emission spectrum of the phosphor closely matches the chlorophyll's absorption spectra,with similarities of 75.06%and 94.52%,respectively.This was further confirmed through a fabricated LED with a n-UV chip(395 nm).To further assess the potential for agritech applications,a light-conversion film incorporating the developed phosphor in PDMS glue was prepared.An outdoor cultivation trial with Chlorella showed that the algae's growth rate improves by 27.3%relative to a control group.These results reveal the significant potential of the Na_(3)KMg_(7)(PO_(4))_(6):Eu^(2+),Mn^(2+)phosphor for enhancing plant growth in practical applications.展开更多
The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples w...The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.展开更多
Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge ...Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.展开更多
To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the character...To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the characteristics of low-tempe rature sulfuric acid deco mposition.When a single monazite was leached using 75 wt% H_(2)SO_(4) solution with phosphoric acid,the size and number of monazite particles in the washing slag gradually decrease with the increase in phosphoric acid content in the leaching solution.The monazite phase can hardly be found in the slag when the phosphoric acid content reaches 70 g/L,which indicates that phosphoric acid is favorable for monazite decomposition.The mixed rare earth concentrate was leached by 75 wt% H_(2)SO_(4) containing 70 g/L phosphoric acid,the mineral compositions of the washing slag are only gypsum and unwashed rare earth sulfuric acid.After cyclic leaching of75 wt% H_(2)SO_(4),the mineral compositions of the primary leaching washing slag are mainly undecomposed monazite,rare earth sulfate and calcium sulfate.However,monazite is not found in the mineral phase of the second and third leaching washing slag.The leaching rates of rare earth and phosphorus gradually increase with the increase in cyclic leaching times.In addition,the phosphoric acid content in the leaching solution increases with the increase in the number of cyclic leaching time.However,the rising trend decreases when the phosphoric acid content reaches 50 g/L by adsorption and crystallization of phosphoric acid.A small amount of water can be used to clean the leaching residue before washing to recover the more soluble phosphorus acid according to the difference of dissolution between phosphoric acid and rare earth sulfuric acid.展开更多
This investigation evaluated the impact of as-is biochar(BC)and phosphorous(P)-loaded biochar(PBC)(3%)on the growth and biochemical characteristics of rice under exposure to vanadium(V)(60 mg L^(-1)).The results indic...This investigation evaluated the impact of as-is biochar(BC)and phosphorous(P)-loaded biochar(PBC)(3%)on the growth and biochemical characteristics of rice under exposure to vanadium(V)(60 mg L^(-1)).The results indicate that rice plants exposed to a V-only treatment experienced declines in several growth parameters.Conversely,the inclusion of BC and PBC caused noteworthy increases in physiological traits.PBC performed well in stress environments.Specifically,the shoot and root fresh weights increased by 82.86 and 53.33%,respectively,when compared to the V-only treatment.In addition,the SPAD chlorophyll of the shoot increased by 13.05%relative to the V-amended plants.Moreover,including BC and PBC improved the antioxidant enzyme traits of plant shoot and root,such as significant increases in superoxide dismutase(SOD by 56.11 and 117.35%),catalase(CAT by 34.19 and 35.77%),and peroxidase(POD by 25.90 and 18.74%)when compared to V-only amended plants,respectively.These findings strongly suggest that the application of BC and PBC can trigger biochemical pathways that facilitate biomass accumulation in meristematic cells.However,further investigations are required to elucidate the underlying mechanisms responsible for this growth promotion.展开更多
The significance of axial chiral compounds in asymmetric organic catalysis,functional materials,and pharmaceutical useful molecules has encouraged advancements in the atroposelective synthesis of such compounds.Herein...The significance of axial chiral compounds in asymmetric organic catalysis,functional materials,and pharmaceutical useful molecules has encouraged advancements in the atroposelective synthesis of such compounds.Herein,we report the first atroposelective construction of axially chiral N-aryl benzimidazoles catalyzed by a polymer-supported chiral phosphoric acid.A varied library of atropisomers has been synthesized in 30%-96%yield with 58%-98%enantiomeric excess(ee)under a straightforward reaction setup(without the use of molecular sieves).Notably,even after 12 cycles,the immobilized catalyst maintained its reactivity and selectivity(TON>540).展开更多
To develop new up-conversion luminescent materials for non-contact optical thermometer with high sensitivity and temperature re solution,a battery of KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphors were fabricated through...To develop new up-conversion luminescent materials for non-contact optical thermometer with high sensitivity and temperature re solution,a battery of KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphors were fabricated through solid reaction process.The crystal structure,up-conversion luminescence,energy transfer,thermal stability and optical temperature sensing performances were studied in detail.Under 980 nm laser excitation,the KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphor exhibits distinctive emission bands of Ho^(3+)at545,660,and 755 nm,and excellent illuminant performance.Based on the thermally coupled levels(TCLs)of Ho^(3+),both the relative sensitivity(S_(r))and absolute sensitivity(S_(a))display similar change trends,with the highest values of 6.73%/K(@298 K)and 5.69%/K(@298 K),respectively.Furthermore,the highest Saof 13.90%/K(@623 K)and the ultimate Srof 0.62%/K(@298 K)are achieved based on non-TCLs of Ho^(3+).Therefore,KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphor is a promising candidate for self-referenced optical thermometry.展开更多
Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-d...Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-doped SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12)(SLGASO)phosphor that significantly compensates for the absence of cyan light,known as the"cyan cavity".The SLGASO host crystallizes into a cubic structure with the Ia3d space group.The cell parameters were determined using Rietveld refinement.Under430 nm blue excitation,SLGASO:Ce^(3+)emits intense cyan-green light in the 450-700 nm wavelength range.The representative SLGASO:0.07Ce^(3+)phosphor has an internal quantum efficiency(IQE)of 95.4%and excellent thermal stability,remaining 92.7%of its initial emission intensity at 152℃.After 155 d of immersion in water,the luminous intensity of SLGASO:0.07Ce^(3+)remains constant,confirming its waterproofness.Furthermore,a pc-WLED device with luminous efficiency(LE)of 101.58 lm/W,color rendering index(Ra)of 91,correlated color temperature(CCT)of 4536 K,and Commission Internationale de L'Eclairage(CIE)chromaticity coordinates of(0.3555,0.3390)was fabricated by combining asprepared cyan-green-emitting SLGASO:0.07Ce^(3+),yellow-emitting Y_(3)Al_(5)O_(12):Ce^(3+)(YAG:Ce^(3+)),and redemitting(Ca,Sr)AlSiN_(3):Eu^(2+)phosphors,as well as a 450 nm blue chip.These findings indicate that SLGASO:0.07Ce^(3+)phosphor can bridge the cyan gap and improve the performance of as-fabricated fullvisible-spectrum WLEDs.展开更多
Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,p...Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.展开更多
All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have e...All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have exactly the same chemical properties,they can overcome the problem of poor fiber-matrix adhesion in biocomposites.In this study,ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution,and the effects of dissolution temperature,dissolution time and pressing load on the properties of ACC were investigated.The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio.The use of an aqueous ethanol solution at an ethanol mass fraction of 50%as a coagulation bath and a pressing load of 3000 kg during the drying process achieved the best mechanical properties of ACC,with a tensile strength of 49.3 MPa(approximately 210%higher than that of the untreated wood pulp)and an elastic modulus of 1.6 GPa(approximately 122%higher than that of the untreated wood pulp).The composite’s compactness affected ACC’s mechanical properties.The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp.With a pressing load of 3500 kg,the surface water contact angle(WCA)increased to 110.3°(approximately 94%higher than that of the untreated wood pulp),and the air permeability was significantly reduced to 1.1 mm/s,showing its good application prospects in the field of green packaging materials.展开更多
Cr^(3+)-activated phosphors have attracted significant attention for their tunable emission,spanning narrow-band red to broadband near-infrared(NIR)luminescence,depending on the crystal field environment.Here,we repor...Cr^(3+)-activated phosphors have attracted significant attention for their tunable emission,spanning narrow-band red to broadband near-infrared(NIR)luminescence,depending on the crystal field environment.Here,we report the realization of wideband NIR emission in Cr^(3+)-doped GaScO_(3)(GaScO_(3):Cr^(3+))phosphors with perovskite structure.The phosphors were synthesized by traditional solid-state reaction method.The first-principles calculations were conducted and the results demonstrate that the octahedral[GaO_(6)]sites exhibit relatively weak crystal field strength(Dq/B≈2.2),facilitating efficient spin-allowed transitions of Cr^(3+)from the^(4)T_(2)state to the^(4)A_(2)state.The photoluminescence spectroscopy revealed an exceptionally broad NIR emission band from a range of 700 nm-1200 nm with full width at half maximum(FWHM)of 145 nm under 465-nm excitation.Overall,these results highlight the viability of GaScO_(3):Cr^(3+)as a highly promising material for wideband NIR applications.展开更多
A set of germanate garnet phosphors containing Tb^(3+)and Eu^(3+)were adequately synthesized using the high-temperature solid-state technique.The structural properties,photoluminescence characteristics,fluorescence li...A set of germanate garnet phosphors containing Tb^(3+)and Eu^(3+)were adequately synthesized using the high-temperature solid-state technique.The structural properties,photoluminescence characteristics,fluorescence lifetimes,and temperature-sensing capabilities of the phosphors were thoroughly investigated.X-ray diffraction confirms the crystalline structure of the phosphors,while photoluminescence spectra reveal a colour shift attributed to the trans fer of energy from Tb^(3+)to Eu^(3+)as the concentration of Eu^(3+)increases.The phosphors excited by UV light display a transition in colour from green to yellow,and subsequently to red,which can be used as a colour tunable phosphor in white light-emitting diode(w-LED) applications.As a novel temperature sensing material,the maximum relative sensitivity of Ca_(3)Sc_(2)Ge_(3)O_(12):Tb^(3+),Eu^(3+)phosphor is 0.1044 K-1(298 K),highlighting its potential for applications in temperature sensing.展开更多
To meet the high demands of modern technology for temperature sensors,Lu_(2)WO_(6):Sm^(3+)self-activated phosphors were selected to design four-mode optical thermometers.A comprehensive investigation was conducted on ...To meet the high demands of modern technology for temperature sensors,Lu_(2)WO_(6):Sm^(3+)self-activated phosphors were selected to design four-mode optical thermometers.A comprehensive investigation was conducted on the synthetic method,structural and luminescent characteristics,and energy transfer mechanism([WO6]6-→Sm^(3+)). Due to the different temperature responses of two emission centers([WO6]6-and Sm^(3+)),the temperature sensing capability of Lu_(2)WO_(6):Sm^(3+)phosphors was studied.Fluorescence intensity(FI),fluorescence intensity ratio(FIR),Commission Internationale de L'Eclairage coordinates and excitation intensity ratio are the four modes for temperature sensing,and their maximum relative sensitivities are 2.62%/K(350 K),2.06%/K(320 K),0.67%/K(329 K) and 2.42%/K(303 K),respectively.Furthermore,within 303-483 K temperature range,the relative sensitivities based on FI and FIR are bigger than 1.67%/K and 1.16%/K,respectively.Our findings suggest that Lu_(2)WO_(6):Sm^(3+)phosphors with four temperature measurement modes might be applied in multi-mode self-calibration optical thermometers.展开更多
In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(...In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.展开更多
LiGe_(2_(PO_(4))3:Cr^(3+)near-infrared phosphor samples were prepared using high-temperature solid-state method and the corresponding PC-LED devices were prepared.Detailed research was conducted on the photoluminescen...LiGe_(2_(PO_(4))3:Cr^(3+)near-infrared phosphor samples were prepared using high-temperature solid-state method and the corresponding PC-LED devices were prepared.Detailed research was conducted on the photoluminescence characteristics of the samples and the performance of PC-LEDs.Under the excitation of 442 nm blue light,the phosphor obtained by calcination at 1000℃for 4 h exhibited an emission peak at 778 nm in the broadband near-infrared spectrum.The excitation peak of LiGe_(2_(PO_(4))3:Cr^(3+)underwent the energy level transitions,^(4)A_(2)(4F)→^(4)T_(1)(4P)and^(4)A_(2)(4F)→^(4)T_(1)(4F),while the emission peak underwent the energy level transition,^(4)T_(2)(4F)→^(4)A_(2)(4F).By coating the phosphor on the surface of the InGaN blue-light chip,The near-infrared PC-LED was prepared,and a near-infrared LED light source with broadband emission was obtained.At a driving current of 60 mA,the near-infrared light radiation power was 7 mW.The experimental results indicate that LiGe_(2_(PO_(4))3:Cr^(3+)near-infrared phosphor can be used to prepare broadband near-infrared LED light sources based on blue-light chips,which has intriguing applications in near-infrared spectroscopy.展开更多
Cr^(3+)-activated spinel-type phosphors have great potential in different application scenes due to their unique sharp and far-red(FR)emission.However,the multi-functionalization of these phosphors is still limited by...Cr^(3+)-activated spinel-type phosphors have great potential in different application scenes due to their unique sharp and far-red(FR)emission.However,the multi-functionalization of these phosphors is still limited by their unsatisfied comprehensive properties.Herein,a simple composition engineering was used to explore versatile phosphors,using Ga^(3+)to substitute Al^(3+)to improve the optical performances of spinel LiAl5-xGa_(x)O_(8):Cr^(3+).The substitution of Ga^(3+)evidently affects the crystal field environment of Cr^(3+)and further accounts for the luminescence optimization.Using the optimized phosphor,two sensitive thermometers based on fluorescence intensity ratio(FIR)technique were explored on account of the different temperature dependencies of^(4)T_(2)→^(4)A_(2)and2E→^(4)A_(2)emission and of R2and R1emission.The maximum relative sensitivity Sr are 1.29%/K at 323 K and 1.94%/K at 298 K,respectively,which are superior to that of the Ga^(3+)-unsubstituted one.Besides,the Ga^(3+)→Al^(3+)substitutions endow the resultant phosphors with larger atomic number(Zeff)and theoretical density,which is more conducive to improving X-ray-stimulated emission for X-ray detection.Finally,the potential applications of the developed phosphor are also reflected in plant growth and night vision surveillance,as it is shown to be capable of matching with the absorption of phytochrome PFRand visualizing objects in the dark.This contribution not only proves that the developed LiAl5-xGa_(x)O_(8):Cr^(3+)FR phosphors are promising versatile platforms,but also provides an essential guidance for designing more novel multi-functional materials.展开更多
基金Project supported by the Science and Technology Project of Shenzhen City (JSGG20210802154213040)the Guangdong Basic and Applied Basic Research Foundation (2024A1515010001)the Shenzhen Postdoctoral Research Funding Project。
文摘All-inorganic reflective phosphor-in-glass film(PiGF) converter has garnered widespread attentions for high brightness laser-driven white lighting,while its poor color quality and low luminescence stability have been inevitable roadblocks.Herein,the bicolor PiGF containing green-emitting Y3Al3.08Ga1.92O12:Ce3+(YAGG) and red-emitting CaAlSiN_(3):Eu^(2+)(CASN) phosphors bonded on Al2O3substrate was prepared for enabling high color quality laser-driven white lighting in reflective configuration.The bicolor PiGF has high quantum efficiency and good structure stability.By optimizing the CASN content,PiGF thickness and Al_(2)O_(3) content,the reflective bicolor PiGF based white laser diode(LD)displays good luminescence performance with a luminous flux of 451.5 lm and a luminous efficacy of142.3 lm/W and high color quality with a color rendering index(CRI) of 85.3 and a correlated color temperature(CCT) of 5177 K under the incident laser power of 3.15 W,and still has excellent luminescence and color stabilities(CRI and CCT) under the continuous laser excitation of 5.61 W,attributed to the good thermal conductivity and high reflectivity of Al_(2)O_(3) substrate and scattering enhancement effect of Al_(2)O_(3) particles.It can be foreseen that the reflective bicolor PiGF converter provides a promising strategy for enabling high quality laser-driven white lighting.
文摘The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalysis systems.Chiral phosphoric acids(CPA)have been widely acknowledged as versatile chiral organocatalysts since it was first discovered in 2004,finding application in catalyzing diverse asymmetric reactions.A comprehensive overview of recent advances in CPA-catalyzed asymmetric electrophilic amination reactions using different N-electrophilic reagents,including azo reagents,aryldiazonium salts,and imine derivatives,is presented.Furthermore,insights into future developments in this field are offered.
基金financially supported by the Caiyun Postdoctoral Innovation Project(No.C615300504089)Yunnan Fundamental Research Project(No.202401AS070128)National Natural Science Foundation of China(No.22165031).
文摘Bifunctional applications in solid state lighting and optical thermometry are attractive in the optical field.Despite Eu^(3+)doped phosphors are widely used in white-LEDs,phosphors with high temperature sensitivity remain rare.Herein,NaLnTe_(2)O_(7):Eu^(3+)(Ln=Y and Gd)phosphors were synthesized using a rapid microwave-assisted solidstate(MASS)method to fulfill these applications.Under 395 nm excitation,NaLnTe_(2)O_(7):Eu^(3+)exhibit the characteristic ^(5)D_(0)→^(7)F_(J)(J=1–4)transitions of Eu^(3+).Substituting Gd^(3+) for Y^(3+) enhances the luminescence by approximately 2.42 times.Structural analyses reveal that the improved luminescent properties are attributed to the more distorted and appropriate coordination environment in NaGdTe_(2)O_(7):Eu^(3+).Finally,white-LEDs using NaGdTe_(2)O_(7):Eu^(3+)as the red-component produce white light with high Ra of 89.Furthermore,the distinct thermal responses of the ^(5)D_(0)→^(7)F_(J) transitions enable NaLnTe_(2)O_(7):Eu^(3+)to function as temperature sensors via fluorescence intensity ratio(FIR)strategy.NaYTe_(2)O_(7):Eu^(3+)possesses the maximum relative/absolute sensitivity of 1.45%/15.93%K^(-1),whereas NaGdTe_(2)O_(7):Eu^(3+)achieves the maximum relative/absolute sensitivity of 1.53%/30.24% K^(-1).This work highlights the significance of cationic substitution in enhancing luminescent properties for multifunctional applications.
基金supported by the National Natural Science Foundation of China(52403403)Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.
基金supported by the Department of Industry and Information Technology of Gansu Province(2024 Provincial Key Talent Program)the National Natural Science Foundation of China(U22A20136)。
文摘A blue-red dual-emitting phosphor,Na_(3)KMg_(7)(PO_(4))_(6):Eu^(2+),Mn^(2+)was developed in this study.Eu^(2+)acts as a sensitizer ion in Na_(3)KMg_(7)(PO_(4))_(6):Mn^(2+),which significantly improves the undesirable luminous efficiency of Mn^(2+).The energy transfer between Eu^(2+)and Mn^(2+)significantly boosts both internal quantum efficiency(IQE)and external quantum efficiency(EQE)of the phosphor,achieving values of 72.5%and 42.6%,respectively.Additionally,the phosphor demonstrates exceptional thermal stability,at150℃.maintaining 71.49%of its initial emission intensity.The emission spectrum of the phosphor closely matches the chlorophyll's absorption spectra,with similarities of 75.06%and 94.52%,respectively.This was further confirmed through a fabricated LED with a n-UV chip(395 nm).To further assess the potential for agritech applications,a light-conversion film incorporating the developed phosphor in PDMS glue was prepared.An outdoor cultivation trial with Chlorella showed that the algae's growth rate improves by 27.3%relative to a control group.These results reveal the significant potential of the Na_(3)KMg_(7)(PO_(4))_(6):Eu^(2+),Mn^(2+)phosphor for enhancing plant growth in practical applications.
基金financed by the National Research Foundation of Ukraine(Project No.2022.01/0168).
文摘The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.
文摘Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.
基金support by the National Natural Science Foundation of Inner Mongolia (2022SHZR1885)Natural Science Foundation of Hebei province (E2022402101,E2022402105)。
文摘To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the characteristics of low-tempe rature sulfuric acid deco mposition.When a single monazite was leached using 75 wt% H_(2)SO_(4) solution with phosphoric acid,the size and number of monazite particles in the washing slag gradually decrease with the increase in phosphoric acid content in the leaching solution.The monazite phase can hardly be found in the slag when the phosphoric acid content reaches 70 g/L,which indicates that phosphoric acid is favorable for monazite decomposition.The mixed rare earth concentrate was leached by 75 wt% H_(2)SO_(4) containing 70 g/L phosphoric acid,the mineral compositions of the washing slag are only gypsum and unwashed rare earth sulfuric acid.After cyclic leaching of75 wt% H_(2)SO_(4),the mineral compositions of the primary leaching washing slag are mainly undecomposed monazite,rare earth sulfate and calcium sulfate.However,monazite is not found in the mineral phase of the second and third leaching washing slag.The leaching rates of rare earth and phosphorus gradually increase with the increase in cyclic leaching times.In addition,the phosphoric acid content in the leaching solution increases with the increase in the number of cyclic leaching time.However,the rising trend decreases when the phosphoric acid content reaches 50 g/L by adsorption and crystallization of phosphoric acid.A small amount of water can be used to clean the leaching residue before washing to recover the more soluble phosphorus acid according to the difference of dissolution between phosphoric acid and rare earth sulfuric acid.
基金funded by the Launch Fund of Hainan University High Level Talent,China(RZ2100003226)the National Natural Science Foundation of China(NSFC-31860728).
文摘This investigation evaluated the impact of as-is biochar(BC)and phosphorous(P)-loaded biochar(PBC)(3%)on the growth and biochemical characteristics of rice under exposure to vanadium(V)(60 mg L^(-1)).The results indicate that rice plants exposed to a V-only treatment experienced declines in several growth parameters.Conversely,the inclusion of BC and PBC caused noteworthy increases in physiological traits.PBC performed well in stress environments.Specifically,the shoot and root fresh weights increased by 82.86 and 53.33%,respectively,when compared to the V-only treatment.In addition,the SPAD chlorophyll of the shoot increased by 13.05%relative to the V-amended plants.Moreover,including BC and PBC improved the antioxidant enzyme traits of plant shoot and root,such as significant increases in superoxide dismutase(SOD by 56.11 and 117.35%),catalase(CAT by 34.19 and 35.77%),and peroxidase(POD by 25.90 and 18.74%)when compared to V-only amended plants,respectively.These findings strongly suggest that the application of BC and PBC can trigger biochemical pathways that facilitate biomass accumulation in meristematic cells.However,further investigations are required to elucidate the underlying mechanisms responsible for this growth promotion.
基金supported by Shenzhen Science and Technology Research(Nos.JSGG20201103153807021,GXWD20220811173736002,KCXFZ20230731094904009)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24qnpy060)+2 种基金Natural Science Foundation of Guangdong Province(No.2021A1515110366)National Natural Science Foundation of China(Nos.22302048,82204231,22275146)Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application。
文摘The significance of axial chiral compounds in asymmetric organic catalysis,functional materials,and pharmaceutical useful molecules has encouraged advancements in the atroposelective synthesis of such compounds.Herein,we report the first atroposelective construction of axially chiral N-aryl benzimidazoles catalyzed by a polymer-supported chiral phosphoric acid.A varied library of atropisomers has been synthesized in 30%-96%yield with 58%-98%enantiomeric excess(ee)under a straightforward reaction setup(without the use of molecular sieves).Notably,even after 12 cycles,the immobilized catalyst maintained its reactivity and selectivity(TON>540).
基金supported by the National Natural Science Foundation of China(61865003)。
文摘To develop new up-conversion luminescent materials for non-contact optical thermometer with high sensitivity and temperature re solution,a battery of KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphors were fabricated through solid reaction process.The crystal structure,up-conversion luminescence,energy transfer,thermal stability and optical temperature sensing performances were studied in detail.Under 980 nm laser excitation,the KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphor exhibits distinctive emission bands of Ho^(3+)at545,660,and 755 nm,and excellent illuminant performance.Based on the thermally coupled levels(TCLs)of Ho^(3+),both the relative sensitivity(S_(r))and absolute sensitivity(S_(a))display similar change trends,with the highest values of 6.73%/K(@298 K)and 5.69%/K(@298 K),respectively.Furthermore,the highest Saof 13.90%/K(@623 K)and the ultimate Srof 0.62%/K(@298 K)are achieved based on non-TCLs of Ho^(3+).Therefore,KBaGd(MoO_(4))_(3):Yb^(3+),Ho^(3+)phosphor is a promising candidate for self-referenced optical thermometry.
基金supported by the National Natural Science Foundations of China(21801254,52002411,52272174,22205017,U1301242)China Postdoctoral Science Foundation(2022M720400,2023M743978)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(20130171130001)the Ministry of Science,Technological Development,and Innovation of the Republic of Serbia(451-03-66/2024-03/200017)。
文摘Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-doped SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12)(SLGASO)phosphor that significantly compensates for the absence of cyan light,known as the"cyan cavity".The SLGASO host crystallizes into a cubic structure with the Ia3d space group.The cell parameters were determined using Rietveld refinement.Under430 nm blue excitation,SLGASO:Ce^(3+)emits intense cyan-green light in the 450-700 nm wavelength range.The representative SLGASO:0.07Ce^(3+)phosphor has an internal quantum efficiency(IQE)of 95.4%and excellent thermal stability,remaining 92.7%of its initial emission intensity at 152℃.After 155 d of immersion in water,the luminous intensity of SLGASO:0.07Ce^(3+)remains constant,confirming its waterproofness.Furthermore,a pc-WLED device with luminous efficiency(LE)of 101.58 lm/W,color rendering index(Ra)of 91,correlated color temperature(CCT)of 4536 K,and Commission Internationale de L'Eclairage(CIE)chromaticity coordinates of(0.3555,0.3390)was fabricated by combining asprepared cyan-green-emitting SLGASO:0.07Ce^(3+),yellow-emitting Y_(3)Al_(5)O_(12):Ce^(3+)(YAG:Ce^(3+)),and redemitting(Ca,Sr)AlSiN_(3):Eu^(2+)phosphors,as well as a 450 nm blue chip.These findings indicate that SLGASO:0.07Ce^(3+)phosphor can bridge the cyan gap and improve the performance of as-fabricated fullvisible-spectrum WLEDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51991351 and51903132)the Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001).
文摘Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.
基金Fundamental Research Funds for the Central Universities,China(No.2232023G-04)。
文摘All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have exactly the same chemical properties,they can overcome the problem of poor fiber-matrix adhesion in biocomposites.In this study,ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution,and the effects of dissolution temperature,dissolution time and pressing load on the properties of ACC were investigated.The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio.The use of an aqueous ethanol solution at an ethanol mass fraction of 50%as a coagulation bath and a pressing load of 3000 kg during the drying process achieved the best mechanical properties of ACC,with a tensile strength of 49.3 MPa(approximately 210%higher than that of the untreated wood pulp)and an elastic modulus of 1.6 GPa(approximately 122%higher than that of the untreated wood pulp).The composite’s compactness affected ACC’s mechanical properties.The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp.With a pressing load of 3500 kg,the surface water contact angle(WCA)increased to 110.3°(approximately 94%higher than that of the untreated wood pulp),and the air permeability was significantly reduced to 1.1 mm/s,showing its good application prospects in the field of green packaging materials.
基金supported by the Natural Science Research Project of Anhui Provincial Education Department for Excellent Young Scholars(Grant No.2024AH030007)the National Natural Science Foundation of China(Grant No.52202001).
文摘Cr^(3+)-activated phosphors have attracted significant attention for their tunable emission,spanning narrow-band red to broadband near-infrared(NIR)luminescence,depending on the crystal field environment.Here,we report the realization of wideband NIR emission in Cr^(3+)-doped GaScO_(3)(GaScO_(3):Cr^(3+))phosphors with perovskite structure.The phosphors were synthesized by traditional solid-state reaction method.The first-principles calculations were conducted and the results demonstrate that the octahedral[GaO_(6)]sites exhibit relatively weak crystal field strength(Dq/B≈2.2),facilitating efficient spin-allowed transitions of Cr^(3+)from the^(4)T_(2)state to the^(4)A_(2)state.The photoluminescence spectroscopy revealed an exceptionally broad NIR emission band from a range of 700 nm-1200 nm with full width at half maximum(FWHM)of 145 nm under 465-nm excitation.Overall,these results highlight the viability of GaScO_(3):Cr^(3+)as a highly promising material for wideband NIR applications.
基金Project supported by the National Natural Science Foundation of China (52274273)。
文摘A set of germanate garnet phosphors containing Tb^(3+)and Eu^(3+)were adequately synthesized using the high-temperature solid-state technique.The structural properties,photoluminescence characteristics,fluorescence lifetimes,and temperature-sensing capabilities of the phosphors were thoroughly investigated.X-ray diffraction confirms the crystalline structure of the phosphors,while photoluminescence spectra reveal a colour shift attributed to the trans fer of energy from Tb^(3+)to Eu^(3+)as the concentration of Eu^(3+)increases.The phosphors excited by UV light display a transition in colour from green to yellow,and subsequently to red,which can be used as a colour tunable phosphor in white light-emitting diode(w-LED) applications.As a novel temperature sensing material,the maximum relative sensitivity of Ca_(3)Sc_(2)Ge_(3)O_(12):Tb^(3+),Eu^(3+)phosphor is 0.1044 K-1(298 K),highlighting its potential for applications in temperature sensing.
文摘To meet the high demands of modern technology for temperature sensors,Lu_(2)WO_(6):Sm^(3+)self-activated phosphors were selected to design four-mode optical thermometers.A comprehensive investigation was conducted on the synthetic method,structural and luminescent characteristics,and energy transfer mechanism([WO6]6-→Sm^(3+)). Due to the different temperature responses of two emission centers([WO6]6-and Sm^(3+)),the temperature sensing capability of Lu_(2)WO_(6):Sm^(3+)phosphors was studied.Fluorescence intensity(FI),fluorescence intensity ratio(FIR),Commission Internationale de L'Eclairage coordinates and excitation intensity ratio are the four modes for temperature sensing,and their maximum relative sensitivities are 2.62%/K(350 K),2.06%/K(320 K),0.67%/K(329 K) and 2.42%/K(303 K),respectively.Furthermore,within 303-483 K temperature range,the relative sensitivities based on FI and FIR are bigger than 1.67%/K and 1.16%/K,respectively.Our findings suggest that Lu_(2)WO_(6):Sm^(3+)phosphors with four temperature measurement modes might be applied in multi-mode self-calibration optical thermometers.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.
基金Funded by the National Natural Science Foundation of China(No.51474170)the Foundation of Shaanxi Educational Committee(No.17JK0395)the Xi'an Science and Technology Committee Program(No.GXYD9.2)。
文摘LiGe_(2_(PO_(4))3:Cr^(3+)near-infrared phosphor samples were prepared using high-temperature solid-state method and the corresponding PC-LED devices were prepared.Detailed research was conducted on the photoluminescence characteristics of the samples and the performance of PC-LEDs.Under the excitation of 442 nm blue light,the phosphor obtained by calcination at 1000℃for 4 h exhibited an emission peak at 778 nm in the broadband near-infrared spectrum.The excitation peak of LiGe_(2_(PO_(4))3:Cr^(3+)underwent the energy level transitions,^(4)A_(2)(4F)→^(4)T_(1)(4P)and^(4)A_(2)(4F)→^(4)T_(1)(4F),while the emission peak underwent the energy level transition,^(4)T_(2)(4F)→^(4)A_(2)(4F).By coating the phosphor on the surface of the InGaN blue-light chip,The near-infrared PC-LED was prepared,and a near-infrared LED light source with broadband emission was obtained.At a driving current of 60 mA,the near-infrared light radiation power was 7 mW.The experimental results indicate that LiGe_(2_(PO_(4))3:Cr^(3+)near-infrared phosphor can be used to prepare broadband near-infrared LED light sources based on blue-light chips,which has intriguing applications in near-infrared spectroscopy.
基金Project supported by the National Natural Science Foundation of China(52272143,51902063)the Guangdong Basic and Applied Basic Research Foundation(2023A1515010166,2023A1515010866,2021A1515110404)the Major Science and Technology Project of Jiangxi Province(20223AAE01003)。
文摘Cr^(3+)-activated spinel-type phosphors have great potential in different application scenes due to their unique sharp and far-red(FR)emission.However,the multi-functionalization of these phosphors is still limited by their unsatisfied comprehensive properties.Herein,a simple composition engineering was used to explore versatile phosphors,using Ga^(3+)to substitute Al^(3+)to improve the optical performances of spinel LiAl5-xGa_(x)O_(8):Cr^(3+).The substitution of Ga^(3+)evidently affects the crystal field environment of Cr^(3+)and further accounts for the luminescence optimization.Using the optimized phosphor,two sensitive thermometers based on fluorescence intensity ratio(FIR)technique were explored on account of the different temperature dependencies of^(4)T_(2)→^(4)A_(2)and2E→^(4)A_(2)emission and of R2and R1emission.The maximum relative sensitivity Sr are 1.29%/K at 323 K and 1.94%/K at 298 K,respectively,which are superior to that of the Ga^(3+)-unsubstituted one.Besides,the Ga^(3+)→Al^(3+)substitutions endow the resultant phosphors with larger atomic number(Zeff)and theoretical density,which is more conducive to improving X-ray-stimulated emission for X-ray detection.Finally,the potential applications of the developed phosphor are also reflected in plant growth and night vision surveillance,as it is shown to be capable of matching with the absorption of phytochrome PFRand visualizing objects in the dark.This contribution not only proves that the developed LiAl5-xGa_(x)O_(8):Cr^(3+)FR phosphors are promising versatile platforms,but also provides an essential guidance for designing more novel multi-functional materials.