Transition-metal catalyzed cross-couplings of aryl halides(ArI,ArBr and ArCl)with a broad range of nucleophiles have been developed as powerful methods for carbon-carbon and carbon-heteroatom bonds formation.However,d...Transition-metal catalyzed cross-couplings of aryl halides(ArI,ArBr and ArCl)with a broad range of nucleophiles have been developed as powerful methods for carbon-carbon and carbon-heteroatom bonds formation.However,due to the high bond dissociation energy of unactivated C(sp^(2))-F,cross-couplings of mono-fluoroarenes are the most challenging,especially without using transition-metal catalysts.Herein,a photo-induced transition-metal and external photosensitizer free defluorophosphonation of monofluoroarenes via unactivated C(sp^(2))-F bond cleavage is reported.Different mono-fluoroarenes have been successfully cross-coupled with dialkyl phosphites in moderate to excellent yields under mild conditions.Mechanistic studies have revealed the possible involvement of a photo-induced SET process and aryl free radical intermediates.展开更多
Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of effici...Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of efficient strategies for the preparation of these analogues is still attractive but challenging in organophosphorus chemistry. In order to fill this gap, different new routes have been discovered including direct phosphonylation of alkyl radicals, indirect Arbuzov phosphonylation of alkyl radicals and nucleopilic phosphonylation of phosphorus. In this short review, we have attempted to summarize these recent developments for the synthesis of alkyl phosphonates in order to facilitate the development of green pharmacological alkyl phosphonates by emphasizing their variety of products, specificity and relevance, and providing the underlying mechanistic rationale whenever it is possible. We aim to provide readers with a comprehensive understanding of the current state of this field and contribute to future research.展开更多
Metal-organic frameworks(MOFs)containing face-to-faceπ-πinteracting anthracene groups are promising photoresponsive materials because of their rich photophysical properties and their ability to undergo reversible[4+...Metal-organic frameworks(MOFs)containing face-to-faceπ-πinteracting anthracene groups are promising photoresponsive materials because of their rich photophysical properties and their ability to undergo reversible[4+4]photocycloaddition reaction,but it is extremely challenging to obtain such materials.Herein,we propose a generalized method to accomplish photoresponsive MOFs by introducing anthracene pairs into the framework of the dianthracene-phosphonate-based MOFs by controlling the synthesis temperature.Compounds Dy_(2)(ampH)_(2x)(amp2H_(2))_(3-x)(H_(2)O)_(6)·4H_(2)O[x=0.01,Dy-70;x=0.02,Dy-80;x=0.037,Dy-90;amp_(2)H_(4)=pre-photodimerized 9-anthracenemethylphosphonic acid(amp H_(2))]were obtained by the reaction of DyCl_(3)and amp_(2)H_(4)in water at 70,80,and 90℃,respectively.They all show excimer emission of paired anthracenes at ca.555 nm.Detailed studies of Dy-90 have shown that it undergoes a reversible photodimerization reaction under 365 nm and then 280 nm illumination,accompanied by luminescence changes.This property further enables Dy-90 to be used for optical anti-counterfeiting.展开更多
Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte los...Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.展开更多
The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determinati...The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.展开更多
A novel low-density lipoprotein adsorbent was prepared simply by directly phosphonating porous cellulose beads. Tests in vitro demonstrated that this adsorbent showed quite good adsorption performance for selective re...A novel low-density lipoprotein adsorbent was prepared simply by directly phosphonating porous cellulose beads. Tests in vitro demonstrated that this adsorbent showed quite good adsorption performance for selective removal of low-density lipoprotein from human plasma. The effects of preparation conditions on the lipoprotein sorption properties of the resulted adsorbent were investigated. The adsorption dynamics was also examined.展开更多
Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally ri...Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.展开更多
The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The s...The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).展开更多
In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mech...In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established.展开更多
The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion perform...The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion performance of the conversion coating were investigated using electrochemical test and salt spray test (SST), respectively. The electrochemical test shows that the Zr/Ti and ATMP coating improves the corrosion resistance of AA6061 as good as the chromate (VI) coating. But the results of SST show that the corrosion resistance of Zr/Ti and ATMP coating is not as good as the chromate (VI) coating. The corrosion area is less than 2% after 72 h.展开更多
The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based part...The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based particle size analysis, adsorption measurements and DLVO theory. The flotation tests indicated that rutile fines could be flocculated by SPA, and pH, shear force(stirring speed) and stirring time played significant roles in flocculation. The isoelectric point(IEP) and zeta-potential in whole range all moved to negative values as SPA was added according to the results from zeta-potential measurement. It was demonstrated that the primary reason for above was chemical adsorption. The laser-based particle size results showed the particle size at a stirring speed of 1800 r/min and 1000 mg/L SPA was the largest in all experiments. Furthermore, using the optical microscope observation and flotation tests, it was important for flotation of rutile fines to produce the flocculant. In the light of above-mentioned facts, floc flotation of rutile fines could be induced in the form of chemical adsorption by SPA to increase particle size. The data calculated from DLVO theory also indicated that chemical adsorption was the main reason for the formation of flocculant.展开更多
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate...The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.展开更多
A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that...A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that SPE exhibited a stronger collecting ability for ilmenite than the traditional collector styrene phosphonic acid(SPA). Zeta potential measurements revealed that both SPE and SPA could negatively shift the zeta potential of ilmenite, while SPE had more effects than SPA, suggesting the stronger adsorption of SPE. The analysis of X-ray photoelectron spectroscopy confirmed the chemisorption of SPA and SPE onto the Fe/Ti sites of ilmenite. According to frontier orbital theory, the chemical activities of SPE are greater than those of SPA. The partial densities of states analysis indicated that the PO—H groups of the collectors could interact with the Ti/Fe atoms of the ilmenite surface to generate a stable four-membered ring. The bonding model of the collector and(104) ilmenite surface showed that the adsorption energy of SPE was higher than that of SPA. Overall, SPE presented a better collecting ability and interaction effect for ilmenite flotation than SPA, and had the potential to replace SPA in the industry.展开更多
The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rat...The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rate constant is k29 = 1.50 × 10-5s-1. The sorption behavior of APAR for In ( Ⅲ ) obeys the Freundlich isotherm. The themodynamic parameters of sorption, enthalpy change ()H, free energy change ()G and entropy change ()S of sorption (APAR) for In ( Ⅲ ) are 24.1 kJ·mol-1, -35. 1kJ· mol-1 and 200J· mol-1·K-1 respectively. The coordination molar ratio of the functional group of APAR to In( Ⅲ ) is 2:1. The sorption mechanism of APAR for In( Ⅲ ) was examined by IR spectrometry.展开更多
Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108)...Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108),di-2-ethylhexyl phosphoric acid(D2 EHPA) and 2-ethylhexyl phosphonic acidmono-2-ethylhexyl ester(EHEHPA) as extractants was investigated.The effects of experimental parameters including equilibrium time,extractant concentration,aqueous pH,phase ratio and salt concentration on the extraction process were studied.The results indicate that the extraction ability and capacity of the extractants follow the order:SPE108> D2 EHPA> EHEHPA.What’s more,the extraction process is less affected by ammonium sulfate in the aqueous phase with SPE108.The results of the separation between lanthanum and adjacent lanthanides(Ce,Pr,Nd,Sm) show that SPE108 can separate lanthanides efficiently at low pH.The extraction mechanism of SPE108 is proved to be similar to D2 EHPA,and the density functional theory(DFT) calculation results infer that SPE108 exhibits superior extraction ability due to its strong electron-accepting ability.展开更多
The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solutio...The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.展开更多
A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution inc...A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution including HNO3 solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (HEH(EH)P) as the carrier dissolved in kerosene. The mixed solution of carrier and kerosene was membrane solution. The optimum transport conditions of Gd(III) were that concentration of HNO3 solution was 4.00 tool/L, concentration of carrier was 0.16 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 of the renewal phase, and pH value was 4.80 of the feed phase. Under the optimum condition studied, when initial concentration of Gd(III) was 1.00 × 10^-4 mol/L, the transfer rate of Gd(III) was 96.8% during 130 min.展开更多
The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this ...The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.展开更多
N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions ...N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions between NMPCS and plasmid DNA were investigated by FTIR, ^13C NMR, X-ray, agarose gel electrophoresis retardation assay, atomic force microscopy (AFM) and circular dichroism (CD). The results suggest that at charge ratio 2:1 or above, DNA could be completely entrapped and spherical complexes with mean size of 80-210 nm were formed. Taking HeLa as host cell, luciferase expression mediated by NMPCS improved about 100 times compared to the expression mediated by chitosan.展开更多
The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The ...The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.展开更多
基金support from the NSFC(Grant No.21971093)the International Joint Research Centre for Green Catal-ysis and Synthesis(Grants No.2016B01017 and 18JR4RA003)。
文摘Transition-metal catalyzed cross-couplings of aryl halides(ArI,ArBr and ArCl)with a broad range of nucleophiles have been developed as powerful methods for carbon-carbon and carbon-heteroatom bonds formation.However,due to the high bond dissociation energy of unactivated C(sp^(2))-F,cross-couplings of mono-fluoroarenes are the most challenging,especially without using transition-metal catalysts.Herein,a photo-induced transition-metal and external photosensitizer free defluorophosphonation of monofluoroarenes via unactivated C(sp^(2))-F bond cleavage is reported.Different mono-fluoroarenes have been successfully cross-coupled with dialkyl phosphites in moderate to excellent yields under mild conditions.Mechanistic studies have revealed the possible involvement of a photo-induced SET process and aryl free radical intermediates.
基金support from the National Key R&D Program(2023YFD1700500)National Natural Science Foundation of China(22301093)the Fundamental Research Funds for the Central Universities and the Central China Normal University(CCNU).
文摘Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of efficient strategies for the preparation of these analogues is still attractive but challenging in organophosphorus chemistry. In order to fill this gap, different new routes have been discovered including direct phosphonylation of alkyl radicals, indirect Arbuzov phosphonylation of alkyl radicals and nucleopilic phosphonylation of phosphorus. In this short review, we have attempted to summarize these recent developments for the synthesis of alkyl phosphonates in order to facilitate the development of green pharmacological alkyl phosphonates by emphasizing their variety of products, specificity and relevance, and providing the underlying mechanistic rationale whenever it is possible. We aim to provide readers with a comprehensive understanding of the current state of this field and contribute to future research.
基金supported by grants from the National Natural Science Foundation of China(Nos.22273037,21731003)。
文摘Metal-organic frameworks(MOFs)containing face-to-faceπ-πinteracting anthracene groups are promising photoresponsive materials because of their rich photophysical properties and their ability to undergo reversible[4+4]photocycloaddition reaction,but it is extremely challenging to obtain such materials.Herein,we propose a generalized method to accomplish photoresponsive MOFs by introducing anthracene pairs into the framework of the dianthracene-phosphonate-based MOFs by controlling the synthesis temperature.Compounds Dy_(2)(ampH)_(2x)(amp2H_(2))_(3-x)(H_(2)O)_(6)·4H_(2)O[x=0.01,Dy-70;x=0.02,Dy-80;x=0.037,Dy-90;amp_(2)H_(4)=pre-photodimerized 9-anthracenemethylphosphonic acid(amp H_(2))]were obtained by the reaction of DyCl_(3)and amp_(2)H_(4)in water at 70,80,and 90℃,respectively.They all show excimer emission of paired anthracenes at ca.555 nm.Detailed studies of Dy-90 have shown that it undergoes a reversible photodimerization reaction under 365 nm and then 280 nm illumination,accompanied by luminescence changes.This property further enables Dy-90 to be used for optical anti-counterfeiting.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22179130,22379143,22479145)。
文摘Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.
基金Project(2013AA064102)supported by the 12th Five-year Plan of National Scientific and Technological Program of China
文摘The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.
文摘A novel low-density lipoprotein adsorbent was prepared simply by directly phosphonating porous cellulose beads. Tests in vitro demonstrated that this adsorbent showed quite good adsorption performance for selective removal of low-density lipoprotein from human plasma. The effects of preparation conditions on the lipoprotein sorption properties of the resulted adsorbent were investigated. The adsorption dynamics was also examined.
基金supported by the National Natural Science Foundation of China (21403022,21572226)the Natural Science Foundation of Liaoning Province of China (2015020194)~~
文摘Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.
基金Supported by Zhejiang Provincial Natural Science Foundation of China( No.2 0 0 0 72 )
文摘The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).
基金the National Natural Science Foundation of China(Nos.51604302 and 51574282)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established.
基金supported by the Science and Technology Plan Project of Liaoning Province,China(No.2006221011).
文摘The conversion coating was formed by dipping AA6061 in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution at room temperature. The formation process and the anti-corrosion performance of the conversion coating were investigated using electrochemical test and salt spray test (SST), respectively. The electrochemical test shows that the Zr/Ti and ATMP coating improves the corrosion resistance of AA6061 as good as the chromate (VI) coating. But the results of SST show that the corrosion resistance of Zr/Ti and ATMP coating is not as good as the chromate (VI) coating. The corrosion area is less than 2% after 72 h.
基金Projects(51474254,51774332,51320105006) supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProjects(2017zzts579,2017zzts379) supported by the Fundamental Research Funds for the Central Universities of China
文摘The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based particle size analysis, adsorption measurements and DLVO theory. The flotation tests indicated that rutile fines could be flocculated by SPA, and pH, shear force(stirring speed) and stirring time played significant roles in flocculation. The isoelectric point(IEP) and zeta-potential in whole range all moved to negative values as SPA was added according to the results from zeta-potential measurement. It was demonstrated that the primary reason for above was chemical adsorption. The laser-based particle size results showed the particle size at a stirring speed of 1800 r/min and 1000 mg/L SPA was the largest in all experiments. Furthermore, using the optical microscope observation and flotation tests, it was important for flotation of rutile fines to produce the flocculant. In the light of above-mentioned facts, floc flotation of rutile fines could be induced in the form of chemical adsorption by SPA to increase particle size. The data calculated from DLVO theory also indicated that chemical adsorption was the main reason for the formation of flocculant.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.
基金the support from the National Natural Science Foundation of China(Nos.51904214 and 51804238)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20200276)+3 种基金the Natural Science Foundation of Hubei Province,China(No.ZRMS2021000085)the Fundamental Research Funds for the Central Universities,China(No.2021IVA039)the Open Foundation of State Key Laboratory of Mineral Processing,BGRIMM Technology,China(Nos.BGRIMM-KJSKL-202122 and BGRIMM-KJSKL-2022-02)the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education,China(No.201904)。
文摘A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that SPE exhibited a stronger collecting ability for ilmenite than the traditional collector styrene phosphonic acid(SPA). Zeta potential measurements revealed that both SPE and SPA could negatively shift the zeta potential of ilmenite, while SPE had more effects than SPA, suggesting the stronger adsorption of SPE. The analysis of X-ray photoelectron spectroscopy confirmed the chemisorption of SPA and SPE onto the Fe/Ti sites of ilmenite. According to frontier orbital theory, the chemical activities of SPE are greater than those of SPA. The partial densities of states analysis indicated that the PO—H groups of the collectors could interact with the Ti/Fe atoms of the ilmenite surface to generate a stable four-membered ring. The bonding model of the collector and(104) ilmenite surface showed that the adsorption energy of SPE was higher than that of SPA. Overall, SPE presented a better collecting ability and interaction effect for ilmenite flotation than SPA, and had the potential to replace SPA in the industry.
基金This project was supported by Foundation of Zhejiang Provincial Education Bureau(No.20010677) and Lishui Science and Technology Bureau(No.2001012)
文摘The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rate constant is k29 = 1.50 × 10-5s-1. The sorption behavior of APAR for In ( Ⅲ ) obeys the Freundlich isotherm. The themodynamic parameters of sorption, enthalpy change ()H, free energy change ()G and entropy change ()S of sorption (APAR) for In ( Ⅲ ) are 24.1 kJ·mol-1, -35. 1kJ· mol-1 and 200J· mol-1·K-1 respectively. The coordination molar ratio of the functional group of APAR to In( Ⅲ ) is 2:1. The sorption mechanism of APAR for In( Ⅲ ) was examined by IR spectrometry.
基金National High Technology Research and Development Program of China(863 Program,2013AA064102)Hunan Provincial Science and Technology Plan Project,China (2016TP1007)。
文摘Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108),di-2-ethylhexyl phosphoric acid(D2 EHPA) and 2-ethylhexyl phosphonic acidmono-2-ethylhexyl ester(EHEHPA) as extractants was investigated.The effects of experimental parameters including equilibrium time,extractant concentration,aqueous pH,phase ratio and salt concentration on the extraction process were studied.The results indicate that the extraction ability and capacity of the extractants follow the order:SPE108> D2 EHPA> EHEHPA.What’s more,the extraction process is less affected by ammonium sulfate in the aqueous phase with SPE108.The results of the separation between lanthanum and adjacent lanthanides(Ce,Pr,Nd,Sm) show that SPE108 can separate lanthanides efficiently at low pH.The extraction mechanism of SPE108 is proved to be similar to D2 EHPA,and the density functional theory(DFT) calculation results infer that SPE108 exhibits superior extraction ability due to its strong electron-accepting ability.
基金Supported by the National Natural Science Foundation of China(90401009) the Foundation for Planning Project of West Action of Chinese Academy of Sciences(KZCX2-XB2-13) the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology(602-210805)
文摘The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.
基金supported by the Foundation for Planning project of West Action of Chinese Academy of Sciences(No.KZCX2-XB2-13)the National Natural Science Foundation of China for Young Scientists(No. 41001131+2 种基金No.51009126)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology(No. 602-210805No.602-210804)
文摘A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution including HNO3 solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (HEH(EH)P) as the carrier dissolved in kerosene. The mixed solution of carrier and kerosene was membrane solution. The optimum transport conditions of Gd(III) were that concentration of HNO3 solution was 4.00 tool/L, concentration of carrier was 0.16 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 of the renewal phase, and pH value was 4.80 of the feed phase. Under the optimum condition studied, when initial concentration of Gd(III) was 1.00 × 10^-4 mol/L, the transfer rate of Gd(III) was 96.8% during 130 min.
基金financially supported by the National Natural Science Foundation of China (21506071)the Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection (HSXT2-316)
文摘The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.
基金supports from National Natural Science Foundation of China(No.50233020,30300086)the financial support from Natural Science Foundation of Tianjin(No.05YFJMJC10200).
文摘N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions between NMPCS and plasmid DNA were investigated by FTIR, ^13C NMR, X-ray, agarose gel electrophoresis retardation assay, atomic force microscopy (AFM) and circular dichroism (CD). The results suggest that at charge ratio 2:1 or above, DNA could be completely entrapped and spherical complexes with mean size of 80-210 nm were formed. Taking HeLa as host cell, luciferase expression mediated by NMPCS improved about 100 times compared to the expression mediated by chitosan.
文摘The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.