Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of effici...Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of efficient strategies for the preparation of these analogues is still attractive but challenging in organophosphorus chemistry. In order to fill this gap, different new routes have been discovered including direct phosphonylation of alkyl radicals, indirect Arbuzov phosphonylation of alkyl radicals and nucleopilic phosphonylation of phosphorus. In this short review, we have attempted to summarize these recent developments for the synthesis of alkyl phosphonates in order to facilitate the development of green pharmacological alkyl phosphonates by emphasizing their variety of products, specificity and relevance, and providing the underlying mechanistic rationale whenever it is possible. We aim to provide readers with a comprehensive understanding of the current state of this field and contribute to future research.展开更多
Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte los...Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.展开更多
Inspired by the anti-pancreatic promising results of our novel aminated cyclopropylmethylphosphonate compounds, an in vitro anti-prostate cancer activity exploration of these compounds was carried out on human prostat...Inspired by the anti-pancreatic promising results of our novel aminated cyclopropylmethylphosphonate compounds, an in vitro anti-prostate cancer activity exploration of these compounds was carried out on human prostate cancer cell line PC-3, and showed potent inhibiting activity at low micromolar concentrations (with an IC50 of approximately 45 μM).展开更多
Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limi...Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects.展开更多
Buoyed by the extensive research on the wide-range biological activities of aminophosphonates, a novel class of aminated (cyclopropylmethyl)phosphor-nates compounds was synthesized from diethyl ((1-(3-chloropropyl)cyc...Buoyed by the extensive research on the wide-range biological activities of aminophosphonates, a novel class of aminated (cyclopropylmethyl)phosphor-nates compounds was synthesized from diethyl ((1-(3-chloropropyl)cyclopropyl)methyl)phosphonate and various amines in the presence of Hunig’s base. Upon biological activity screening these compounds demonstrated encouraging anti-pancreatic cancer properties at low micromolar concentrations.展开更多
Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally ri...Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.展开更多
A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that...A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that SPE exhibited a stronger collecting ability for ilmenite than the traditional collector styrene phosphonic acid(SPA). Zeta potential measurements revealed that both SPE and SPA could negatively shift the zeta potential of ilmenite, while SPE had more effects than SPA, suggesting the stronger adsorption of SPE. The analysis of X-ray photoelectron spectroscopy confirmed the chemisorption of SPA and SPE onto the Fe/Ti sites of ilmenite. According to frontier orbital theory, the chemical activities of SPE are greater than those of SPA. The partial densities of states analysis indicated that the PO—H groups of the collectors could interact with the Ti/Fe atoms of the ilmenite surface to generate a stable four-membered ring. The bonding model of the collector and(104) ilmenite surface showed that the adsorption energy of SPE was higher than that of SPA. Overall, SPE presented a better collecting ability and interaction effect for ilmenite flotation than SPA, and had the potential to replace SPA in the industry.展开更多
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate...The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.展开更多
Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108)...Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108),di-2-ethylhexyl phosphoric acid(D2 EHPA) and 2-ethylhexyl phosphonic acidmono-2-ethylhexyl ester(EHEHPA) as extractants was investigated.The effects of experimental parameters including equilibrium time,extractant concentration,aqueous pH,phase ratio and salt concentration on the extraction process were studied.The results indicate that the extraction ability and capacity of the extractants follow the order:SPE108> D2 EHPA> EHEHPA.What’s more,the extraction process is less affected by ammonium sulfate in the aqueous phase with SPE108.The results of the separation between lanthanum and adjacent lanthanides(Ce,Pr,Nd,Sm) show that SPE108 can separate lanthanides efficiently at low pH.The extraction mechanism of SPE108 is proved to be similar to D2 EHPA,and the density functional theory(DFT) calculation results infer that SPE108 exhibits superior extraction ability due to its strong electron-accepting ability.展开更多
The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this ...The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.展开更多
In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) ...In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.展开更多
A novel phosphonate-based chiral metal-organic framework 1 was synthesized from C2-symmetric 1,1?-biphenol-based ligand and structurally characterized by single-crystal and powder X-ray diffraction, Fourier-transform...A novel phosphonate-based chiral metal-organic framework 1 was synthesized from C2-symmetric 1,1?-biphenol-based ligand and structurally characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra(FTIR), circular dichroism(CD) and thermogravimetric analyses(TGA). Two neighboring Mn ions are linked by two carboxylate groups and one phosphate group to form a di-manganese unit [Mn2] and each [Mn2] cluster in 1 is linked by five ligands, generating a 3D network with fns topology. In addition, the photoluminescence properties of 1 and H4 L were investigated.展开更多
A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yie...A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.展开更多
A series of novel mono(2,2,2-trifluoroethyl) esters,mono L-amino acid ester prodrugs of acyclic nucleoside phosphonates was synthesized and their in vitro anti-HBVactivity was evaluated in HepG 2 2.2.15 cells.Compou...A series of novel mono(2,2,2-trifluoroethyl) esters,mono L-amino acid ester prodrugs of acyclic nucleoside phosphonates was synthesized and their in vitro anti-HBVactivity was evaluated in HepG 2 2.2.15 cells.Compound 1d exhibited more potent anti-HBV activity and lower cytotoxicity than those of adefovir dipivoxil and alamifovir(MCC-478) with EC_(50) and CC_(50) values of 0.01μmol/L and 8000μmol/L respectively.展开更多
Three bench-stable difluoromethylene phosphonate hydrazones were prepared from simple diethyl(difluoromethyl)phosphonate within two steps in good yields. The [3 + 2] cycloaddition reaction of these diazo precursors wi...Three bench-stable difluoromethylene phosphonate hydrazones were prepared from simple diethyl(difluoromethyl)phosphonate within two steps in good yields. The [3 + 2] cycloaddition reaction of these diazo precursors with aryl diazonium salts has been accomplished under metal-free conditions with exclusive regioselectivity. This transformation provides practical access to a broad panel of 2-aryl-2 H-tetrazol-5-yl difluoromethylene phosphonates, including the corresponding derivatives of amino acid(phenylalanine) and drug cores(Pomalidomide and Lapatinib fragment).展开更多
Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of...Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of high-efficiency antifouling coating for metallic substrates.Six block polymers(pSBMA-b-pDEMMP)with different segment lengths(nSBMA:nDEMMP=10:25,40:25,100:25,75:5,75:40,75:100)were prepared and anchored on titanium alloy(TC4)substrates.1H nuclear magnetic resonance(NMR)results clearly showed the precise preparation of the block polymers.XPS analysis and water contact angle measurement indicated the successful construction of the block polymer on TC4 substrates.The relationship between the antifouling performance of the polymer coating and the length of pDEMMP and pSBMA segments in the block polymer was established.Results showed that the polymer containing the pSBMA segment above 40 repeat units could significantly inhibit protein adsorption,platelet adhesion,bacterial adhesion and cell adhesion,while the pDEMMP segment above 5 repeat units is able to generate stable zwitterionic polymer coating on TC4 substrates.This ease of production and high-efficiency antifouling modification strategy elucidated here may find broad application for biomedical implants and devices in clinical applications.展开更多
The extraction of Eu(Ⅲ) with β-diketone, HA, and monodentate or bidentate Lewis bases, B, into chloroform and the luminescence properties of the extracted species were studied. Pivaloyltrifluoroacetone, Hpta, and ...The extraction of Eu(Ⅲ) with β-diketone, HA, and monodentate or bidentate Lewis bases, B, into chloroform and the luminescence properties of the extracted species were studied. Pivaloyltrifluoroacetone, Hpta, and 2-thenoyltfifluoroacetone, Htta, were used as the β-diketones. The Lewis bases, B, were tetraethyl methylene diphosphonate, POPO, which was bidentate, and diethyl benzylphosphonate, PhPO which was monodentate. Based on the extraction data, the stability constants, log β, of the first complexes between tfis(β-diketonato)Eu(Ⅲ) and the phosphonate, EuA3B, were determined to be 6.0 for the POPO complex and 3.40 for the PhPO complex. The Eu(Ⅲ) luminescence intensity in the EuA3POPO was larger than EuA3 where A was either pta or tta at similar concentrations of Eu(Ⅲ), while that in Eu(pta)3PhPO was stronger than EuA3; however, in Eu(tta)3PhPO, it was weaker than Eu(tta)3. The POPO functions as a sensitizer, and the PhPO functions as a quencher for the tta chelate and as a sensitizer for the pta chelate. From the lifetime and quantum yield, φ, of the Eu(Ⅲ) luminescence in the complexes as well as the observation of the extractability of Eu(Ⅲ) with the Hpta and the phosphonates and of the luminescence spectra of the complexes, it was confirmed that the extraction of Eu(Ⅲ) was remarkably enhanced with a β-diketonate and a strong Lewis base, and also the ternary complex that was formed as the extracted species, showed luminescence enhancement. This phenomenon may be due the formation of a strong bond between the Eu(Ⅲ) and the strong Lewis base leading to more hydrophobicity in the extracted species and also to more effective energy transfer from the Lewis base to the Eu(Ⅲ). It was not significant whether the donor atoms were N or O.展开更多
Traditional treatment processes cannot completely remove phosphonates in circulating cooling water by one-step method. Herein, we designed peroxymonosulfate/UV irradiation/hydrated zirconium oxide(PMS/UV/HZO) coupling...Traditional treatment processes cannot completely remove phosphonates in circulating cooling water by one-step method. Herein, we designed peroxymonosulfate/UV irradiation/hydrated zirconium oxide(PMS/UV/HZO) coupling process to enhance the phosphonates removal. In particular, nitrilotrismethylenephosphonic acid(NTMP) removal efficiency by PMS/UV/HZO process was much higher than that of PMS/UV process, UV/HZO process and other processes in comparison experiments. Specifically,almost 97.2% NTMP in water was degraded, and the total phosphorous(TP) reduced from 9.3 mg/L to 0.26 mg/L at pH 7 within 180 min. TP removal efficiency still reached above 90% after 5 cycles adsorptiondesorption of HZO. Moreover, Cl^(-), NO_(3)-and SO_(4)^(2-)ions all had negligible effect on NTMP removal. During the process, NTMP was first destroyed to form phosphates and other intermediates by the reactive oxygen species(ROS), then phosphates were in situ immobilized via HZO adsorption. Sulfate radical(SO_(4)^(·-))has been confirmed to be the major ROS in the reaction system by quenching experiment and electron paramagnetic resonance(EPR) characterization. And the excellent selective adsorption capacity of HZO for phosphate produced was attributed to the strong inner-sphere coordination between H_(2)PO_(4)-/HPO_(4)^(2-)and Zr-OH on the surface of HZO. These results suggest that PMS/UV/HZO process is a promising technique for enhanced phosphonates decontamination.展开更多
Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found t...Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.展开更多
基金support from the National Key R&D Program(2023YFD1700500)National Natural Science Foundation of China(22301093)the Fundamental Research Funds for the Central Universities and the Central China Normal University(CCNU).
文摘Organophosphate analogues are commonly occurring structural features that are widely present in numerous natural substances, biologically active molecules and modern pharmaceutical compounds. The development of efficient strategies for the preparation of these analogues is still attractive but challenging in organophosphorus chemistry. In order to fill this gap, different new routes have been discovered including direct phosphonylation of alkyl radicals, indirect Arbuzov phosphonylation of alkyl radicals and nucleopilic phosphonylation of phosphorus. In this short review, we have attempted to summarize these recent developments for the synthesis of alkyl phosphonates in order to facilitate the development of green pharmacological alkyl phosphonates by emphasizing their variety of products, specificity and relevance, and providing the underlying mechanistic rationale whenever it is possible. We aim to provide readers with a comprehensive understanding of the current state of this field and contribute to future research.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22179130,22379143,22479145)。
文摘Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.
文摘Inspired by the anti-pancreatic promising results of our novel aminated cyclopropylmethylphosphonate compounds, an in vitro anti-prostate cancer activity exploration of these compounds was carried out on human prostate cancer cell line PC-3, and showed potent inhibiting activity at low micromolar concentrations (with an IC50 of approximately 45 μM).
基金funded by National Institutes of Health,National Institute on Aging,grant numbers,R01AG076731,R01AG049994National Institute for Arthritis and Musculoskeletal and Skin Diseases,R01AR043510,and P30 AR069655。
文摘Osteoporosis remains incurable.The most widely used antiresorptive agents,bisphosphonates(BPs),also inhibit bone formation,while the anabolic agent,teriparatide,does not inhibit bone resorption,and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects.
文摘Buoyed by the extensive research on the wide-range biological activities of aminophosphonates, a novel class of aminated (cyclopropylmethyl)phosphor-nates compounds was synthesized from diethyl ((1-(3-chloropropyl)cyclopropyl)methyl)phosphonate and various amines in the presence of Hunig’s base. Upon biological activity screening these compounds demonstrated encouraging anti-pancreatic cancer properties at low micromolar concentrations.
基金supported by the National Natural Science Foundation of China (21403022,21572226)the Natural Science Foundation of Liaoning Province of China (2015020194)~~
文摘Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.
基金the support from the National Natural Science Foundation of China(Nos.51904214 and 51804238)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20200276)+3 种基金the Natural Science Foundation of Hubei Province,China(No.ZRMS2021000085)the Fundamental Research Funds for the Central Universities,China(No.2021IVA039)the Open Foundation of State Key Laboratory of Mineral Processing,BGRIMM Technology,China(Nos.BGRIMM-KJSKL-202122 and BGRIMM-KJSKL-2022-02)the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education,China(No.201904)。
文摘A styryl phosphonate ester(SPE) collector was used to improve the flotation performance of ilmenite, and the adsorption mechanism and model were revealed and established, respectively. Microflotation tests showed that SPE exhibited a stronger collecting ability for ilmenite than the traditional collector styrene phosphonic acid(SPA). Zeta potential measurements revealed that both SPE and SPA could negatively shift the zeta potential of ilmenite, while SPE had more effects than SPA, suggesting the stronger adsorption of SPE. The analysis of X-ray photoelectron spectroscopy confirmed the chemisorption of SPA and SPE onto the Fe/Ti sites of ilmenite. According to frontier orbital theory, the chemical activities of SPE are greater than those of SPA. The partial densities of states analysis indicated that the PO—H groups of the collectors could interact with the Ti/Fe atoms of the ilmenite surface to generate a stable four-membered ring. The bonding model of the collector and(104) ilmenite surface showed that the adsorption energy of SPE was higher than that of SPA. Overall, SPE presented a better collecting ability and interaction effect for ilmenite flotation than SPA, and had the potential to replace SPA in the industry.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.
基金National High Technology Research and Development Program of China(863 Program,2013AA064102)Hunan Provincial Science and Technology Plan Project,China (2016TP1007)。
文摘Herein,styryl phosphonate monoester(SPE) was synthesized and first introduced as rare earth extractant.The solvent extraction of lanthanum(Ⅲ) from nitrate solution using styryl phosphonate mono-isooctyl ester(SPE108),di-2-ethylhexyl phosphoric acid(D2 EHPA) and 2-ethylhexyl phosphonic acidmono-2-ethylhexyl ester(EHEHPA) as extractants was investigated.The effects of experimental parameters including equilibrium time,extractant concentration,aqueous pH,phase ratio and salt concentration on the extraction process were studied.The results indicate that the extraction ability and capacity of the extractants follow the order:SPE108> D2 EHPA> EHEHPA.What’s more,the extraction process is less affected by ammonium sulfate in the aqueous phase with SPE108.The results of the separation between lanthanum and adjacent lanthanides(Ce,Pr,Nd,Sm) show that SPE108 can separate lanthanides efficiently at low pH.The extraction mechanism of SPE108 is proved to be similar to D2 EHPA,and the density functional theory(DFT) calculation results infer that SPE108 exhibits superior extraction ability due to its strong electron-accepting ability.
基金financially supported by the National Natural Science Foundation of China (21506071)the Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection (HSXT2-316)
文摘The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.
基金supported by the State Key Program of Coal Joint Funds of National Natural Science Foundation of China (No.51134020)the Natural Science Foundation of Shandong Province(No. ZR2011EL036)the High School Science & Technology Fund Planning Project of Shandong Province (No. JIILD53)
文摘In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.
基金Supported by NSFC(No.21431004,21522104 and 21620102001)“973”Program(No.2014CB932102 and 2016YFA0203400)+1 种基金the Shanghai“Eastern Scholar”Program SSTC-14YF1401300the Key Project of Basic Research of Shanghai(17JC1403100)
文摘A novel phosphonate-based chiral metal-organic framework 1 was synthesized from C2-symmetric 1,1?-biphenol-based ligand and structurally characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra(FTIR), circular dichroism(CD) and thermogravimetric analyses(TGA). Two neighboring Mn ions are linked by two carboxylate groups and one phosphate group to form a di-manganese unit [Mn2] and each [Mn2] cluster in 1 is linked by five ligands, generating a 3D network with fns topology. In addition, the photoluminescence properties of 1 and H4 L were investigated.
基金This project was supported by the National Natural Science Foundation of China (No. 20084001).
文摘A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.
基金supported by the grants from the National Natural Science Foundation of China(No.20962004)the Provincial Social Development Foundation of Guizhou,China(No.QKHSYZ[2009]3081)+1 种基金Provincial Special Assistant Foundation for High-level Talents of Guizhou,China(No.TZJF-2009-36)Science and Technology Foundation of Guizhou Province,China(No.QKHJZ[2008]2140)
文摘A series of novel mono(2,2,2-trifluoroethyl) esters,mono L-amino acid ester prodrugs of acyclic nucleoside phosphonates was synthesized and their in vitro anti-HBVactivity was evaluated in HepG 2 2.2.15 cells.Compound 1d exhibited more potent anti-HBV activity and lower cytotoxicity than those of adefovir dipivoxil and alamifovir(MCC-478) with EC_(50) and CC_(50) values of 0.01μmol/L and 8000μmol/L respectively.
基金supported by the National Natural Science Foundation of China (Nos.21772142,21901181 and 21961142015)the National Key Research and Development Program of China (No.2019YFA0905100)+1 种基金Tianjin Municipal Science & Technology Commission (No.19JCQNJC04700)the CNRS in France。
文摘Three bench-stable difluoromethylene phosphonate hydrazones were prepared from simple diethyl(difluoromethyl)phosphonate within two steps in good yields. The [3 + 2] cycloaddition reaction of these diazo precursors with aryl diazonium salts has been accomplished under metal-free conditions with exclusive regioselectivity. This transformation provides practical access to a broad panel of 2-aryl-2 H-tetrazol-5-yl difluoromethylene phosphonates, including the corresponding derivatives of amino acid(phenylalanine) and drug cores(Pomalidomide and Lapatinib fragment).
基金This work was financially supported by the Six Talent Peaks Project in Jiangsu Province(No.SWYY-060)the National Natural Science Foundation of China(No.21504046)the Projects of Nanjing Normal University(Nos.184080H20192,184080H10386 and 184080H202B283).
文摘Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of high-efficiency antifouling coating for metallic substrates.Six block polymers(pSBMA-b-pDEMMP)with different segment lengths(nSBMA:nDEMMP=10:25,40:25,100:25,75:5,75:40,75:100)were prepared and anchored on titanium alloy(TC4)substrates.1H nuclear magnetic resonance(NMR)results clearly showed the precise preparation of the block polymers.XPS analysis and water contact angle measurement indicated the successful construction of the block polymer on TC4 substrates.The relationship between the antifouling performance of the polymer coating and the length of pDEMMP and pSBMA segments in the block polymer was established.Results showed that the polymer containing the pSBMA segment above 40 repeat units could significantly inhibit protein adsorption,platelet adhesion,bacterial adhesion and cell adhesion,while the pDEMMP segment above 5 repeat units is able to generate stable zwitterionic polymer coating on TC4 substrates.This ease of production and high-efficiency antifouling modification strategy elucidated here may find broad application for biomedical implants and devices in clinical applications.
基金a Grant-in-Aid for Scientific Research(C), (No19550096) from the Ministry of Education, Science, Sports, and Culture, Japan
文摘The extraction of Eu(Ⅲ) with β-diketone, HA, and monodentate or bidentate Lewis bases, B, into chloroform and the luminescence properties of the extracted species were studied. Pivaloyltrifluoroacetone, Hpta, and 2-thenoyltfifluoroacetone, Htta, were used as the β-diketones. The Lewis bases, B, were tetraethyl methylene diphosphonate, POPO, which was bidentate, and diethyl benzylphosphonate, PhPO which was monodentate. Based on the extraction data, the stability constants, log β, of the first complexes between tfis(β-diketonato)Eu(Ⅲ) and the phosphonate, EuA3B, were determined to be 6.0 for the POPO complex and 3.40 for the PhPO complex. The Eu(Ⅲ) luminescence intensity in the EuA3POPO was larger than EuA3 where A was either pta or tta at similar concentrations of Eu(Ⅲ), while that in Eu(pta)3PhPO was stronger than EuA3; however, in Eu(tta)3PhPO, it was weaker than Eu(tta)3. The POPO functions as a sensitizer, and the PhPO functions as a quencher for the tta chelate and as a sensitizer for the pta chelate. From the lifetime and quantum yield, φ, of the Eu(Ⅲ) luminescence in the complexes as well as the observation of the extractability of Eu(Ⅲ) with the Hpta and the phosphonates and of the luminescence spectra of the complexes, it was confirmed that the extraction of Eu(Ⅲ) was remarkably enhanced with a β-diketonate and a strong Lewis base, and also the ternary complex that was formed as the extracted species, showed luminescence enhancement. This phenomenon may be due the formation of a strong bond between the Eu(Ⅲ) and the strong Lewis base leading to more hydrophobicity in the extracted species and also to more effective energy transfer from the Lewis base to the Eu(Ⅲ). It was not significant whether the donor atoms were N or O.
基金the National Natural Science Foundation of China (No. 52000102)the Natural Science Foundation of Jiangsu Province (No. BK20190689) for offering financial support to this research。
文摘Traditional treatment processes cannot completely remove phosphonates in circulating cooling water by one-step method. Herein, we designed peroxymonosulfate/UV irradiation/hydrated zirconium oxide(PMS/UV/HZO) coupling process to enhance the phosphonates removal. In particular, nitrilotrismethylenephosphonic acid(NTMP) removal efficiency by PMS/UV/HZO process was much higher than that of PMS/UV process, UV/HZO process and other processes in comparison experiments. Specifically,almost 97.2% NTMP in water was degraded, and the total phosphorous(TP) reduced from 9.3 mg/L to 0.26 mg/L at pH 7 within 180 min. TP removal efficiency still reached above 90% after 5 cycles adsorptiondesorption of HZO. Moreover, Cl^(-), NO_(3)-and SO_(4)^(2-)ions all had negligible effect on NTMP removal. During the process, NTMP was first destroyed to form phosphates and other intermediates by the reactive oxygen species(ROS), then phosphates were in situ immobilized via HZO adsorption. Sulfate radical(SO_(4)^(·-))has been confirmed to be the major ROS in the reaction system by quenching experiment and electron paramagnetic resonance(EPR) characterization. And the excellent selective adsorption capacity of HZO for phosphate produced was attributed to the strong inner-sphere coordination between H_(2)PO_(4)-/HPO_(4)^(2-)and Zr-OH on the surface of HZO. These results suggest that PMS/UV/HZO process is a promising technique for enhanced phosphonates decontamination.
文摘Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.