Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associa...Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).展开更多
This study investigates the removal of fluorine(F)impurities from phosphogypsum(PG)using steam as the reaction medium.The effects of the reaction atmosphere,temperature,time,and steam velocity on F impurities removal ...This study investigates the removal of fluorine(F)impurities from phosphogypsum(PG)using steam as the reaction medium.The effects of the reaction atmosphere,temperature,time,and steam velocity on F impurities removal were systematically examined.The results showed that with a steam velocity of 0.0184 m·s^(-1),a reaction temperature of 700℃,and a reaction time of 60 min,the F removal rate reached 95.87%.Further investigations into the defluorination mechanism revealed that steam and SiO_(2) synergistically enhance fluoride removal,playing a crucial role in improving the defluorination efficiency.Kinetic analysis of the defluorination process,based on the shrinking core model(SCM),indicated that internal diffusion is the rate-controlling step,with the activation energy of 30.12 kJ·mol^(-1).This study identifies optimal conditions for PG defluorination and proposes a defluorination mechanism,contributing to the theoretical understanding of impurity removal through the thermal treatment of PG.展开更多
The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy ...The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal.Under mechanical grinding conditions,this approach enhances the rheological properties of the phosphogypsumslurries and facilitates the dissolution and removal of impurity ions.Experimental results demonstrate that the synergistic method achieves a remarkable 64.01%increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process.This technique not only achieves high purification efficiency but also offers a practical pathway for the high-value utilization of phosphogypsum.These findings suggest that this method has substantial potential for enhancing sustainable resource management and enabling broader industrial applications of purified phosphogypsum.展开更多
The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The i...The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The ideal reaction temperature for PG decomposition and desulfurization is 1173-1273 K.The 10 key chemical reactions controlling coal reductive decomposition PG have been selected.The heat release of critical exothermic reactions can satisfy the autothermal operation of PG decomposition and desulfurization process.Meanwhile,the spontaneity of oxidation reactions has thermodynamically priority over reduction reactions.But the reaction mechanism shows that the oxidation of CaS by O_(2)is in parallel competition with the reduction of CaSO_(4)by CO and C.Furthermore,clarifying the regulatory mechanisms of PG decomposition temperature and reaction atmosphere(reducibility and oxidation)is beneficial for maximizing the production of CaO and SO_(2).展开更多
Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosph...Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosphogypsum.However,pipe plugging,which is caused by the poor workability of HPG-based filling materials,has become a major safety hazard in the filling process.Determining an economical and practicable method is urgently needed to improve the workability of HPG slurry work.First,this work found that grind-ing treatment was much more effective than increasing concentration(59wt%-65wt%)and adding tailings(20wt%-100wt%)in enhan-cing the workability of HPG slurry based on a comprehensive analysis of water retention,fluidity,and flow stability.Then,the combined effects of particle size,particle morphology,water film,and interparticle interactions on the workability of HPG slurry were quantitat-ively described through a microanalysis.Moreover,the first direct evidence for the transformation from robust embedded structures to soft stacking structures was presented.In practice,the filling materials should be prepared by grinding HPG for 20 min and mixing with 0-200wt%phosphorus tailings to achieve satisfactory workability and mechanical performance.The results of this study provide practic-al and feasible methods for addressing the stable transportation problem of HPG slurry.展开更多
Ouricuri endocarp was utilized as a biosorbent for the recovery of europium(Eu(Ⅲ))from aqueous solutions and rare earth elements(REEs)from authentic leachate derived from phosphogypsum,which encompasses various REEs....Ouricuri endocarp was utilized as a biosorbent for the recovery of europium(Eu(Ⅲ))from aqueous solutions and rare earth elements(REEs)from authentic leachate derived from phosphogypsum,which encompasses various REEs.Various characterization techniques were applied to analyze the physicochemical and adsorptive properties of the biosorbent.The results indicate that the adsorption kinetic data conform well to the pseudo-first-order model,while the Liu model describes the equilibrium data well.Ouricuri endocarp and Eu interactions are favorable and spontaneous.The maximum adsorption capacity for Eu(Ⅲ)is determined to be 22.9 mg/g according to the Liu model.Based on experimental results and adsorbent characteristics,the proposed adsorption mechanisms between ouricuri endocarp and Eu include ion exchange and electrostatic interactions as the primary mechanisms.The Eu(Ⅲ)recovery is also feasible as a continuous flow process demonstrating inclined breakthrough curves and lower values of the length of the mass transfer zone.Ouricuri endocarp demonstrates its selectivity for recovering various REEs from authentic phosphogypsum leachate.It achieves a 98%recovery rate for Eu and approximately 60%for Ce,La,and Nd,affirming its efficacy under real-world conditions.Finally,concentration of REE was done by ashing loaded ouricuri endocarp,and a solid with around 34%(in weight)of REE is obtained.展开更多
Rare earth elements(REEs) were extracted from phosphogypsum(PG) using an indirect leaching method that produces CaCO_(3).The carbonation process transforms PG into CaCO_(3),and a potential source of value is the(NH_(4...Rare earth elements(REEs) were extracted from phosphogypsum(PG) using an indirect leaching method that produces CaCO_(3).The carbonation process transforms PG into CaCO_(3),and a potential source of value is the(NH_(4))_(2)SO_(4) fertilizer.The calcium carbonate byproduct is rich in REEs that are originally present in PG.Calcium carbonate,a byproduct of PG carbonation and a rich source of REEs,could dissolve in nitric acid to produce a calcium nitrate leach solution that contains RE nitrate.Subsequently,the most widely used solvent extraction technique can make use of an environmentally benign nitrate ionic liquid.Cyphos IL 101(trihexyl(tetradecyl)phosphonium chloride) is transformed into trihexyl(tetradecyl)phosphonium nitrate([P_(66614)][NO_(3)]) ionic liquid by adding 2.5 mol/L potassium nitrate.The extraction examinations were tested by equilibration of 2 mL of [P_(66614)][NO_(3)] with 2 mL of a synthetic solution of 1000 mg/L of individual La,Ce,and Nd to gain the optimal extraction conditions.The high extraction efficiency of La,Ce,and Nd was gained by stirring a 1/1 aqueous/organic phase ratio and 3 mol/L NH_(4)NO_(3)(as salting out) at 800 r/min for 40 min at 50℃ to decrease the viscosity of [P_(66614)][NO_(3)].The La(Ⅲ),Ce(Ⅲ),and Nd(Ⅲ) stripping efficiencies were examined from their loaded [P_(66614)][NO_(3)] ionic liquid by 1/1 A/O ratio of acidified water,800 r/min stirring speed,and 25℃.After nine cycles,the extraction and stirring efficiency for the La,Ce,and Nd drop to about 80%.The extraction and stripping parameters are applied to the RE leachate from PG to gain the RE oxide with an assay of 92.67%.展开更多
β-hemihydrate phosphogypsum(HPG)was used to replace a part of cement to prepare hemihydrate phosphogypsum-red mud concrete,effectively increasing the comprehensive use of red mud(RM)and HPG in the concrete.The effect...β-hemihydrate phosphogypsum(HPG)was used to replace a part of cement to prepare hemihydrate phosphogypsum-red mud concrete,effectively increasing the comprehensive use of red mud(RM)and HPG in the concrete.The effects of different RM and HPG contents on the flow properties,water absorption and strengths of HPG-RM concretes were investigated.The appropriate content of HPG reduces the water resistance of red mud concrete,enhances the cohesion and water retention,and effectively filled the pores to decrease the degree of free water erosion.The optimal HPG content was 5%,10%,and 10%for red mud concretes with 30%,40%,and 50%RM,respectively.HPG content has more significant effects on the 28 d strengths of HPG-RM concretes.This consequence is accordant with the effect of HPG content on the pore size and pore size distribution from MIP results.The SEM and XRD results show that a large amount of SO_(4)^(2-)and Ca^(2+)from HPG promote the volcanic ash effect of RM generating more favorable hydration products.However,excessive HPG generates more Ettringite to inhibit the generation of calcium silicate and albite,causing cracks in the concrete and deteriorating performance.展开更多
Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertil...Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertilizer industry, was used to drive the alkaline transformation of the bauxite residue. Under optimal water washing conditions(liquid/solid ratio of 2 mL/g, 30°C, 24 hr), the impact of quantity added, reaction time and reaction mechanism during phosphogypsum application were investigated. Phosphogypsum addition effectively lowered p H levels and reduced the soluble alkalinity by 92.2%. It was found that the concentration of soluble Na and Ca ions in the supernatant increased gradually, whilst the exchangeable Na+and Ca^(2+)in solid phase changed 112 mg/kg and 259 mg/kg, respectively. Ca^(2+)became the dominant element in the solid phase(phosphogypsum addition of 2%, liquid/solid ratio of 2 mL/g, 30°C, 12 hr). X-ray diffraction data indicated that cancrinite and hydrogarnet were the primary alkaline minerals. SEM images suggested that phosphogypsum could promote the formation of stable macroaggregates, whilst the content of Ca^(2+)increased from 5.6% to 18.2% and Na reduced from 6.8% to 2.4%. Treatment with phosphogypsum could significantly promote the transformation of alkalinity cations by neutralization, precipitation and replacement reactions.This research provided a feasible method to promote soil formation of bauxite residue by phosphogypsum amendment.展开更多
A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2 H4 N4 ) as additiv...A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2 H4 N4 ) as additives on gaseous emissions and compost quality. Besides a control, there were three amended treatments with different amounts of additives. The results indicated that the phosphogypsum addition at the rate of 10% of mixture dry weight decreased NH3 and CH4 emissions significantly during composting. The addition of DCD at the rate of 0.2% of mixture dry weight together with 10% of phosphogypsum further reduced the N20 emission by affecting the nitrification process. Reducing the phosphogypsum addition to 5% in the presence of 0.2% DCD moderately increased the NH3 emissions but not N20 emission. The additives increased the ammonium content and electrical conductivity significantly in the final compost. No adverse effect on organic matter degradation or the germination index of the compost was found in the amended treatments. It was recommended that phosphogypsum and DCD could be used in composting for the purpose of reducing NH3 , CH4 and N20 emissions.0ptimal conditions and dose of DCD additive during composting should be determined with different materials and composting systems in further study.展开更多
Phosphogypsum(PG) is a solid waste produced in the phosphate fertilizer industry and is environmentally harmful.The decomposition of PG to recycle calcium and sulfur is a proper way to reutilize PG. Current work aims ...Phosphogypsum(PG) is a solid waste produced in the phosphate fertilizer industry and is environmentally harmful.The decomposition of PG to recycle calcium and sulfur is a proper way to reutilize PG. Current work aims at enriching the basic theory of coal decomposition process of PG. The emphasis was laid on the exploration of impact of main impurities on the process. On the other hand, according to Reaction Module, Equilib Module, and Phase Diagram Module of FactS age, the simulation computation was done on the systems of pure gypsum mixed with coal,with or without impurities for avoiding other impurities interference. Later, possible reactions in the process were deduced. Additionally, experiments were conducted in a TG-DTA integrated thermal gravimetric analyzer and a tube furnace. The products from the experiments were characterized and analyzed to verify the accuracy of theoretical calculations. The results showed that these impurities can change the decomposition process of PG. For example, aluminum oxide was transformed to calcium sulfoaluminate, while iron oxide was transformed to dicalcium ferrite. Furthermore, the results help to further improve the basic theory of phosphogypsum decomposition.展开更多
Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced ...Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.展开更多
A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations o...A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations of saline−alkali ions decreased while the SO_(4)^(2-)concentration increased in bauxite residue leachate;compared with CK(control group)treatment,pH,electric conductivity(EC),exchangeable sodium percentage(ESP),sodium absorption ratio(SAR),and exchangeable Na+content of bauxite residue were reduced following PG treatment;average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm,respectively.SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter.These results indicate that the PG treatment could significantly modulate the saline-alkalinity,and simultaneously enhance aggregate stability of bauxite residue,which provides a facile approach to reclaim bauxite residue disposal areas.展开更多
Antibiotic pollution has become a global eco-environmental issue.To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes,phosphogypsummodified biochar composite(PMBC)was prepared vi...Antibiotic pollution has become a global eco-environmental issue.To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes,phosphogypsummodified biochar composite(PMBC)was prepared via facile one-step from distillers grains,wood chips,and phosphogypsum.The physicochemical properties of PMBCwere characterized by scanning electron microscope(SEM),Fourier transform infrared spectroscopy(FTIR),Zeta potential,X-ray diffraction(XRD),etc.The influencing factors,adsorption behaviors,and mechanisms of sulfadiazine(SD)and sulfamethazine(SMT)onto PMBC were studied by batch and fixed bed column adsorption experiments.The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion,while decreased with the increase of solution pH.The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g,and for SMT were 4.40 and 8.91mg/g,respectively,which was 9.0–22.3 times that of pristine biochar.Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT.When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g,the removal rates of SD and SMT by modified wood chips biochar were both higher than 50%in 4 hr.The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding,π-πdonor-acceptor,electrostatic interaction,and hydrophobic interaction.This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.展开更多
Lime pretreated phosphogypsum(PG) was calcined at 500 ℃ to produce anhydrate gypsum cement. Due to the slow hydration of anhydrate gypsum, additives, K2SO4 and hemihydrate gypsum were selected to accelerate the hyd...Lime pretreated phosphogypsum(PG) was calcined at 500 ℃ to produce anhydrate gypsum cement. Due to the slow hydration of anhydrate gypsum, additives, K2SO4 and hemihydrate gypsum were selected to accelerate the hydration of anhydrate. The hydration characteristics, the resistance to hydrodynamic water, and the mineralogical studies were investigated. The experimental results suggest that activated by K2SO4 and hemihydrate, anhydrate PG hydrates much more rapidly than that in the presence of only K2SO4 or in the absence of additives. The binder has proper setting time, good strength development, and relatively better resistance to water. The hardened binder has hydrated products of rod or stick like shaped dihydrate gypsum crystals.展开更多
Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REE...Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.展开更多
The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH a...The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH and steel slag were analyzed based on setting time, volume stability, strength test, XRD and SEM analyses. The experimental results show that, NaOH as an alkali activator significantly reduces the cement setting time and improves the cement early strength. But the acceleration of hydration proces produces coarse crystalline hydration products and the osteoporosis structure of hardened paste, which has a negative effect on later age strength. The combination of 1% NaOH and 5% steel slag as alkali activating agents is optimal with respect to early and later age strengths. Overdose of NaOH not only decreases the cement strength at later age, but also may cause problem of volume stability.展开更多
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w...Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.展开更多
Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of...Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum.展开更多
The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compres...The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compressive strength value of the sample.Comprehensively evaluate the water resistance and volume stability of the samples,and determine the best formula for new roadbed stabilized materials.The results showed that when the weight ratio of PG,slag and cement was OPG:SG:PC=6:3:1,and mixed with 5%micro silica fume(MSF)and 3‰hydroxypropyl methyl cellulose(HPMC),the sample’s comprehensive performance was the best,specifically,the sample’s compressive strength in 60 days reached 28.8 MPa,the softening coefficient reached 0.9,and the expansion rate was stable at about−0.2%.In addition,the mechanism of action of enhancers MSF and HPMC was analyzed according to use Vicat device,X-ray diffractometer and scanning electron microscope.The best formula SP3GH3 has the best curing effect on soil.The 28-day unconfined compressive strength(UCS)of the sample reached 2.4 MPa,the expansion rate was less than 0.09%,and the water stability coefficient was above 0.79,which was higher than that of the samples cured by traditional cement and lime during the same period.展开更多
基金Project supported by the National Natural Science Foundation of China(52104354)the National Natural Science Foundation of China(51674036)+1 种基金Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of Chinathe China National Nuclear Corporation(U2067201)。
文摘Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).
基金funded by the National Key Research and Development Program of China(2018YFC1903500)the National Key Research and Development Program of China(2019YFC1905800)+1 种基金Hebei Provincial Key Research Projects(22373101D)the commercial project by Beijing Zhong Dian Hua Yuan Environment Protection Technology Co.,Ltd.(E01211200005)。
文摘This study investigates the removal of fluorine(F)impurities from phosphogypsum(PG)using steam as the reaction medium.The effects of the reaction atmosphere,temperature,time,and steam velocity on F impurities removal were systematically examined.The results showed that with a steam velocity of 0.0184 m·s^(-1),a reaction temperature of 700℃,and a reaction time of 60 min,the F removal rate reached 95.87%.Further investigations into the defluorination mechanism revealed that steam and SiO_(2) synergistically enhance fluoride removal,playing a crucial role in improving the defluorination efficiency.Kinetic analysis of the defluorination process,based on the shrinking core model(SCM),indicated that internal diffusion is the rate-controlling step,with the activation energy of 30.12 kJ·mol^(-1).This study identifies optimal conditions for PG defluorination and proposes a defluorination mechanism,contributing to the theoretical understanding of impurity removal through the thermal treatment of PG.
基金financially supported by the Key Research and Development Program of Hubei Province(No.2022BCA082 and No.2022BEC013).
文摘The presence of impurities in phosphogypsum has long impeded its effective utilization,highlighting the need for energy-efficient and sustainable purification methods.This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal.Under mechanical grinding conditions,this approach enhances the rheological properties of the phosphogypsumslurries and facilitates the dissolution and removal of impurity ions.Experimental results demonstrate that the synergistic method achieves a remarkable 64.01%increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process.This technique not only achieves high purification efficiency but also offers a practical pathway for the high-value utilization of phosphogypsum.These findings suggest that this method has substantial potential for enhancing sustainable resource management and enabling broader industrial applications of purified phosphogypsum.
基金financial support by the Phosphogypsum Low-Temperature Decomposition to Produce Calcium-Based Materials and Sulfuric Acid Raw Gas Technology(Horizontal Project)(8503009049)National Natural Science Foundation of China(52376101).
文摘The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The ideal reaction temperature for PG decomposition and desulfurization is 1173-1273 K.The 10 key chemical reactions controlling coal reductive decomposition PG have been selected.The heat release of critical exothermic reactions can satisfy the autothermal operation of PG decomposition and desulfurization process.Meanwhile,the spontaneity of oxidation reactions has thermodynamically priority over reduction reactions.But the reaction mechanism shows that the oxidation of CaS by O_(2)is in parallel competition with the reduction of CaSO_(4)by CO and C.Furthermore,clarifying the regulatory mechanisms of PG decomposition temperature and reaction atmosphere(reducibility and oxidation)is beneficial for maximizing the production of CaO and SO_(2).
基金financial support from the National Natural Science Foundation of China(No.52074137)the Yunnan Fundamental Research Projects,China(Nos.202301BE070001-054 and 202401CF070124)the Yunnan Major Scientific and Technological Projects,China(No.202403AA080001).
文摘Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosphogypsum.However,pipe plugging,which is caused by the poor workability of HPG-based filling materials,has become a major safety hazard in the filling process.Determining an economical and practicable method is urgently needed to improve the workability of HPG slurry work.First,this work found that grind-ing treatment was much more effective than increasing concentration(59wt%-65wt%)and adding tailings(20wt%-100wt%)in enhan-cing the workability of HPG slurry based on a comprehensive analysis of water retention,fluidity,and flow stability.Then,the combined effects of particle size,particle morphology,water film,and interparticle interactions on the workability of HPG slurry were quantitat-ively described through a microanalysis.Moreover,the first direct evidence for the transformation from robust embedded structures to soft stacking structures was presented.In practice,the filling materials should be prepared by grinding HPG for 20 min and mixing with 0-200wt%phosphorus tailings to achieve satisfactory workability and mechanical performance.The results of this study provide practic-al and feasible methods for addressing the stable transportation problem of HPG slurry.
基金Project supported by the Brazilian National Council for Scientific and Technological Development/CNPq(405982/2022-4 and 303992/2021-2)。
文摘Ouricuri endocarp was utilized as a biosorbent for the recovery of europium(Eu(Ⅲ))from aqueous solutions and rare earth elements(REEs)from authentic leachate derived from phosphogypsum,which encompasses various REEs.Various characterization techniques were applied to analyze the physicochemical and adsorptive properties of the biosorbent.The results indicate that the adsorption kinetic data conform well to the pseudo-first-order model,while the Liu model describes the equilibrium data well.Ouricuri endocarp and Eu interactions are favorable and spontaneous.The maximum adsorption capacity for Eu(Ⅲ)is determined to be 22.9 mg/g according to the Liu model.Based on experimental results and adsorbent characteristics,the proposed adsorption mechanisms between ouricuri endocarp and Eu include ion exchange and electrostatic interactions as the primary mechanisms.The Eu(Ⅲ)recovery is also feasible as a continuous flow process demonstrating inclined breakthrough curves and lower values of the length of the mass transfer zone.Ouricuri endocarp demonstrates its selectivity for recovering various REEs from authentic phosphogypsum leachate.It achieves a 98%recovery rate for Eu and approximately 60%for Ce,La,and Nd,affirming its efficacy under real-world conditions.Finally,concentration of REE was done by ashing loaded ouricuri endocarp,and a solid with around 34%(in weight)of REE is obtained.
文摘Rare earth elements(REEs) were extracted from phosphogypsum(PG) using an indirect leaching method that produces CaCO_(3).The carbonation process transforms PG into CaCO_(3),and a potential source of value is the(NH_(4))_(2)SO_(4) fertilizer.The calcium carbonate byproduct is rich in REEs that are originally present in PG.Calcium carbonate,a byproduct of PG carbonation and a rich source of REEs,could dissolve in nitric acid to produce a calcium nitrate leach solution that contains RE nitrate.Subsequently,the most widely used solvent extraction technique can make use of an environmentally benign nitrate ionic liquid.Cyphos IL 101(trihexyl(tetradecyl)phosphonium chloride) is transformed into trihexyl(tetradecyl)phosphonium nitrate([P_(66614)][NO_(3)]) ionic liquid by adding 2.5 mol/L potassium nitrate.The extraction examinations were tested by equilibration of 2 mL of [P_(66614)][NO_(3)] with 2 mL of a synthetic solution of 1000 mg/L of individual La,Ce,and Nd to gain the optimal extraction conditions.The high extraction efficiency of La,Ce,and Nd was gained by stirring a 1/1 aqueous/organic phase ratio and 3 mol/L NH_(4)NO_(3)(as salting out) at 800 r/min for 40 min at 50℃ to decrease the viscosity of [P_(66614)][NO_(3)].The La(Ⅲ),Ce(Ⅲ),and Nd(Ⅲ) stripping efficiencies were examined from their loaded [P_(66614)][NO_(3)] ionic liquid by 1/1 A/O ratio of acidified water,800 r/min stirring speed,and 25℃.After nine cycles,the extraction and stirring efficiency for the La,Ce,and Nd drop to about 80%.The extraction and stripping parameters are applied to the RE leachate from PG to gain the RE oxide with an assay of 92.67%.
基金Funded by the National Natural Science Foundation of China(Nos.52168027 and 12362011)the Guizhou Province Science and Technology Innovation Talent Team Project(No.CXTD[2023]022)the Guizhou Province Science and Technology Support Project(No.[2022]027)。
文摘β-hemihydrate phosphogypsum(HPG)was used to replace a part of cement to prepare hemihydrate phosphogypsum-red mud concrete,effectively increasing the comprehensive use of red mud(RM)and HPG in the concrete.The effects of different RM and HPG contents on the flow properties,water absorption and strengths of HPG-RM concretes were investigated.The appropriate content of HPG reduces the water resistance of red mud concrete,enhances the cohesion and water retention,and effectively filled the pores to decrease the degree of free water erosion.The optimal HPG content was 5%,10%,and 10%for red mud concretes with 30%,40%,and 50%RM,respectively.HPG content has more significant effects on the 28 d strengths of HPG-RM concretes.This consequence is accordant with the effect of HPG content on the pore size and pore size distribution from MIP results.The SEM and XRD results show that a large amount of SO_(4)^(2-)and Ca^(2+)from HPG promote the volcanic ash effect of RM generating more favorable hydration products.However,excessive HPG generates more Ettringite to inhibit the generation of calcium silicate and albite,causing cracks in the concrete and deteriorating performance.
基金supported by the National Natural Science Foundation of China(Nos.41701587 and 41371475)the Environmental Protection's Special Scientific Research for Chinese Public Welfare Industry(No.201509048)
文摘Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertilizer industry, was used to drive the alkaline transformation of the bauxite residue. Under optimal water washing conditions(liquid/solid ratio of 2 mL/g, 30°C, 24 hr), the impact of quantity added, reaction time and reaction mechanism during phosphogypsum application were investigated. Phosphogypsum addition effectively lowered p H levels and reduced the soluble alkalinity by 92.2%. It was found that the concentration of soluble Na and Ca ions in the supernatant increased gradually, whilst the exchangeable Na+and Ca^(2+)in solid phase changed 112 mg/kg and 259 mg/kg, respectively. Ca^(2+)became the dominant element in the solid phase(phosphogypsum addition of 2%, liquid/solid ratio of 2 mL/g, 30°C, 12 hr). X-ray diffraction data indicated that cancrinite and hydrogarnet were the primary alkaline minerals. SEM images suggested that phosphogypsum could promote the formation of stable macroaggregates, whilst the content of Ca^(2+)increased from 5.6% to 18.2% and Na reduced from 6.8% to 2.4%. Treatment with phosphogypsum could significantly promote the transformation of alkalinity cations by neutralization, precipitation and replacement reactions.This research provided a feasible method to promote soil formation of bauxite residue by phosphogypsum amendment.
基金supported by the National Natural Science Foundation of China(No.40971177)the National Key Technology R&D Program(No.2012BAD14B01,2012BAD14B03)+1 种基金the Sino-German Cooperation Project of Recycling of Organic Residues from Agricultural and Municipal Residues in China(No.BMBF,FKZ0330847)the Chinese Universities Scientific Fund
文摘A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2 H4 N4 ) as additives on gaseous emissions and compost quality. Besides a control, there were three amended treatments with different amounts of additives. The results indicated that the phosphogypsum addition at the rate of 10% of mixture dry weight decreased NH3 and CH4 emissions significantly during composting. The addition of DCD at the rate of 0.2% of mixture dry weight together with 10% of phosphogypsum further reduced the N20 emission by affecting the nitrification process. Reducing the phosphogypsum addition to 5% in the presence of 0.2% DCD moderately increased the NH3 emissions but not N20 emission. The additives increased the ammonium content and electrical conductivity significantly in the final compost. No adverse effect on organic matter degradation or the germination index of the compost was found in the amended treatments. It was recommended that phosphogypsum and DCD could be used in composting for the purpose of reducing NH3 , CH4 and N20 emissions.0ptimal conditions and dose of DCD additive during composting should be determined with different materials and composting systems in further study.
基金Supported by the National Natural Science Foundation of China(21666016)
文摘Phosphogypsum(PG) is a solid waste produced in the phosphate fertilizer industry and is environmentally harmful.The decomposition of PG to recycle calcium and sulfur is a proper way to reutilize PG. Current work aims at enriching the basic theory of coal decomposition process of PG. The emphasis was laid on the exploration of impact of main impurities on the process. On the other hand, according to Reaction Module, Equilib Module, and Phase Diagram Module of FactS age, the simulation computation was done on the systems of pure gypsum mixed with coal,with or without impurities for avoiding other impurities interference. Later, possible reactions in the process were deduced. Additionally, experiments were conducted in a TG-DTA integrated thermal gravimetric analyzer and a tube furnace. The products from the experiments were characterized and analyzed to verify the accuracy of theoretical calculations. The results showed that these impurities can change the decomposition process of PG. For example, aluminum oxide was transformed to calcium sulfoaluminate, while iron oxide was transformed to dicalcium ferrite. Furthermore, the results help to further improve the basic theory of phosphogypsum decomposition.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.
基金the financial supports from the National Natural Science Foundation of China(Nos.42030711,41877511).
文摘A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations of saline−alkali ions decreased while the SO_(4)^(2-)concentration increased in bauxite residue leachate;compared with CK(control group)treatment,pH,electric conductivity(EC),exchangeable sodium percentage(ESP),sodium absorption ratio(SAR),and exchangeable Na+content of bauxite residue were reduced following PG treatment;average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm,respectively.SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter.These results indicate that the PG treatment could significantly modulate the saline-alkalinity,and simultaneously enhance aggregate stability of bauxite residue,which provides a facile approach to reclaim bauxite residue disposal areas.
基金supported by the Key Project of Science and Technology Department of Guizhou Province(No.ZK(2022)016)the Special Research Fund of Natural Science(Special Post)of Guizhou University(No.(2020)01)the Key Cultivation Program of Guizhou University(No.2019(08)).
文摘Antibiotic pollution has become a global eco-environmental issue.To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes,phosphogypsummodified biochar composite(PMBC)was prepared via facile one-step from distillers grains,wood chips,and phosphogypsum.The physicochemical properties of PMBCwere characterized by scanning electron microscope(SEM),Fourier transform infrared spectroscopy(FTIR),Zeta potential,X-ray diffraction(XRD),etc.The influencing factors,adsorption behaviors,and mechanisms of sulfadiazine(SD)and sulfamethazine(SMT)onto PMBC were studied by batch and fixed bed column adsorption experiments.The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion,while decreased with the increase of solution pH.The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g,and for SMT were 4.40 and 8.91mg/g,respectively,which was 9.0–22.3 times that of pristine biochar.Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT.When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g,the removal rates of SD and SMT by modified wood chips biochar were both higher than 50%in 4 hr.The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding,π-πdonor-acceptor,electrostatic interaction,and hydrophobic interaction.This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.
基金Funded by the National Natural Science Foundation of China (No. 50802019)
文摘Lime pretreated phosphogypsum(PG) was calcined at 500 ℃ to produce anhydrate gypsum cement. Due to the slow hydration of anhydrate gypsum, additives, K2SO4 and hemihydrate gypsum were selected to accelerate the hydration of anhydrate. The hydration characteristics, the resistance to hydrodynamic water, and the mineralogical studies were investigated. The experimental results suggest that activated by K2SO4 and hemihydrate, anhydrate PG hydrates much more rapidly than that in the presence of only K2SO4 or in the absence of additives. The binder has proper setting time, good strength development, and relatively better resistance to water. The hardened binder has hydrated products of rod or stick like shaped dihydrate gypsum crystals.
文摘Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.
文摘The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH and steel slag were analyzed based on setting time, volume stability, strength test, XRD and SEM analyses. The experimental results show that, NaOH as an alkali activator significantly reduces the cement setting time and improves the cement early strength. But the acceleration of hydration proces produces coarse crystalline hydration products and the osteoporosis structure of hardened paste, which has a negative effect on later age strength. The combination of 1% NaOH and 5% steel slag as alkali activating agents is optimal with respect to early and later age strengths. Overdose of NaOH not only decreases the cement strength at later age, but also may cause problem of volume stability.
基金the National Natural Science Foundation of China(Nos.552104156,52074351,and 52004330)the National Natural Science Foundation of Hunan Province,China(No.2022JJ30714)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3125)。
文摘Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52178328 and 52178361)the Fundamental Research Funds for the Open-end Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering(Grant No.SKLGDUEK2114).
文摘Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum.
基金This work was supported by the Jiangsu Provincial Science and Technology Department’s Social Development-Major Science and Technology Demonstration Project(Grant No.BE2018697)the Jiangsu Provincial Science and Technology Department Social Development Project(Grant No.BE2017704)the Scientific Research Project of the Suqian Municipal Transportation Bureau.
文摘The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compressive strength value of the sample.Comprehensively evaluate the water resistance and volume stability of the samples,and determine the best formula for new roadbed stabilized materials.The results showed that when the weight ratio of PG,slag and cement was OPG:SG:PC=6:3:1,and mixed with 5%micro silica fume(MSF)and 3‰hydroxypropyl methyl cellulose(HPMC),the sample’s comprehensive performance was the best,specifically,the sample’s compressive strength in 60 days reached 28.8 MPa,the softening coefficient reached 0.9,and the expansion rate was stable at about−0.2%.In addition,the mechanism of action of enhancers MSF and HPMC was analyzed according to use Vicat device,X-ray diffractometer and scanning electron microscope.The best formula SP3GH3 has the best curing effect on soil.The 28-day unconfined compressive strength(UCS)of the sample reached 2.4 MPa,the expansion rate was less than 0.09%,and the water stability coefficient was above 0.79,which was higher than that of the samples cured by traditional cement and lime during the same period.