Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros...Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.展开更多
Green hydrogen is crucial for advancing renewable energy technologies and protecting the environment.This study introduces a controllable method for bimetallic nickel-cobalt phosphide on reduced graphene oxide on nick...Green hydrogen is crucial for advancing renewable energy technologies and protecting the environment.This study introduces a controllable method for bimetallic nickel-cobalt phosphide on reduced graphene oxide on nickel foam(NiCo_(3)P.C/NF).The material demonstrated low overpotentials of 58 and 180 mV at10 mA cm^(-2)for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in 1.0 M KOH.It achieved excellent electrochemical water-splitting performance with operating voltages of 1.54 and 2.6 V at 10 and 500 mA cm^(-2),respectively.The overall water-splitting performance of NiCo_(3).C/NF was extremely stable after 75 h of operation at 53 mA cm^(-2),retaining 98%efficiency,better than the sample Pt-C+RuO_(2),and outperforming previous reports.Density functional theory(DFT)results revealed a synergistic NiCo_(3)P.C interaction that yields nearly zero Gibbs free energy change(-0.100 eV)and upshift d-band center,the real active site at the Ni in HER,and the lowest overpotentials 0.26 V at the P active sites for OER.Furthermore,electronic charge distribution shows the maximum charge distribution between the NiCo_(3)P phase and graphene sheet heterojunction,enhancing the electrocatalyst conductivity.This combined approach offers an innovative strategy to design sustainable electrocatalysts for water s plitting.展开更多
Cobalt phosphides are potential catalysts to assist the conversion of lithium polysulfides(LiPSs)in lithium-sulfur(Li-S)batteries.However,existing synthesis methods have difficulty precisely tuning their band valences...Cobalt phosphides are potential catalysts to assist the conversion of lithium polysulfides(LiPSs)in lithium-sulfur(Li-S)batteries.However,existing synthesis methods have difficulty precisely tuning their band valences,which is crucial to balancing intermediate products'adsorption and conversion abilities in Li-S batteries.Moreover,studies on the relationship between their band structures and electrochemical performance are limited.Herein,we report cobalt phosphides(Co_(x)P)with a heterogeneous interface of CoP/Co2P embedded in hollow carbon nanofibers(denoted as Co_(x)P@HCNF)via a one-step sequential phosphorization and carbonization strategy,which is applied as an effective interlayer for Li-S batteries.The Co band valence in CoxP was adjusted to regulate the d-p band gap.Theoretical calculations predict that Co_(x)P with a narrowed d-p band center can optimize the electron transfer kinetics and the adsorption affinity with LiPSs.Li-S full cells with a Co_(x)P@HCNF interlayer demonstrated a high specific capacity of1265 mA h g^(-1)at 0.2C and excellent cycle stability of 788 mA h g^(-1)over 400 cycles at 2.0C.A cell with a lean electrolyte(6.0μL mg^(-1))and a high sulfur loading(6.2 mg cm^(-2))delivered a high areal capacity of4.5 mA h cm^(-2)at 0.5C.This study demonstrates that bimetallic coupling-induced electronic-state modulation effectively balances the chemical adsorption and catalytic capability for developing high-performance Li-S batteries.展开更多
Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures...Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures can effectively promote electron/ion transport.However,the complex evolution of phosphidation and intractable phosphidizing degree greatly affect the composition of active phase,active sites,charge transfer rate,and ion adsorption strength of cathodes.Herein,the critical bimetallic phosphide layer(CBPL)is constructed on the NiCo-layered double hydroxide(NiCo-LDH)skeleton by a controllable anion-exchange strategy,yielding a novel nanohybrid cathode(NiCo-P1.0,1.0 representing the mass ratio of Na_(2)H_(2)PO_(2)to NiCo-LDH).The high-conductivity CBPL with the inner NiCo-LDH forms extensive heterostructures,effectively regulating the electronic structure via charge transfer,thereby improving electrical conductivity.Remarkably,the CBPL exhibits unexpected electrochemical activity and synergizes with NiCo-LDH for electrode reactions,ultimately delivering extra energy.Benefiting from the bifunctional CBPL,NiCo-P1.0 delivers an optimal capacity of 286.64 mAh g^(−1)at 1C(1C=289 mAh g^(−1))and superb rate performance(a capacity retention of 72.22%at 40C).The assembled NiCo-P1.0//Zn battery achieves ultrahigh energy/power density(503.62 Wh kg^(−1)/18.62 kW kg^(−1),based on the mass loading of active material on the cathode),and the flexible quasi-solid-state pouch cell validates its practicality.This work demonstrates the superiority of bifunctional CBPL for surface modification,providing an effective and scalable compositing strategy in achieving high-performance cathodes for aqueous batteries.展开更多
Electrochemical water splitting is a highly promising approach for producing carbon-neutral hydrogen.The development of efficient electrocatalysts for the hydrogen evolution reaction(HER)is crucial to lowering the ene...Electrochemical water splitting is a highly promising approach for producing carbon-neutral hydrogen.The development of efficient electrocatalysts for the hydrogen evolution reaction(HER)is crucial to lowering the energy barriers and enhancing hydrogen production.This drives the search for HER electrocatalysts that are not only cost-effective and abundant but also exhibit high activity and long-term stability.In this review,we provide an in-depth analysis of recent progress in the application of ruthenium phosphides as HER electrocatalysts,offering key insights into their design and performance.Meanwhile,we explore various strategies to enhance their catalytic efficiency,such as increasing the availability of active sites and optimizing their electronic structure.Finally,we outline the key challenges and future directions for developing the next generation of ruthenium phosphide-based HER electrocatalysts.展开更多
Strain effects have garnered significant attention in catalytic applications due to their ability to modulate the electronic structure and surface adsorption properties of catalysts.In this study,we propose a novel ap...Strain effects have garnered significant attention in catalytic applications due to their ability to modulate the electronic structure and surface adsorption properties of catalysts.In this study,we propose a novel approach called“similar stacking”for stress modulation,achieved through the loading of Co_(2)P on Ni_(2)P(Ni_(2)P/Co_(2)P).Theoretical simulations reveal that the compressive strain induced by Co_(2)P influences orbital overlap and electron transfer with hydrogen atoms.Furthermore,the number of stacked layers can be adjusted by varying the precursor soaking time,which further modulates the strain range and hydrogen adsorption.Under a 2-h soaking condition,the strain effect proves favorable for efficient hydrogen production.Experimental characterizations using X-ray diffraction,high-angel annular dark-field scanning transmission election microscope(HAADF-STEM),and X-ray absorption near-edge structure spectroscopy successfully demonstrate lattice contraction of Co_(2)P and bond length shortening of Co-P.Remarkably,our catalyst shows an ultrahigh current density of 1 A cm^(-2) at an overpotential of only 388 mV,surpassing that of commercial Pt/C,while maintaining long-term stability.This material design strategy of similar stacking opens up new avenues of strain modulation and the deeper development of electrocatalysts.展开更多
High-entropy metal phosphide(HEMP)has considerable potential as an electrocatalyst owing to its beneficial properties,including high-entropy alloy synergy as well as the controllable structure and high conductivity of...High-entropy metal phosphide(HEMP)has considerable potential as an electrocatalyst owing to its beneficial properties,including high-entropy alloy synergy as well as the controllable structure and high conductivity of phosphides.Herein,electrospinning and in situ phosphating were employed to prepare three-dimensional(3D)networks of self-supporting HEMP nanofibers with varying degrees of phosphate content.Comprehensive characterizations via X-ray diffraction and X-ray photoelectron spectroscopy,as well as density functional theory calculations,demonstrate that the introduction of phosphorus(P)atoms to HEMP carbon nanofibers mediates their electronic structure,leads to lattice expansion,which in turn enhances their catalytic performance in the hydrogen evolution reaction(HER).Moreover,the formation of metal-P bonds weakens metal-metal interaction and decreases the free energy of hydrogen adsorption,contributing to the exceptional activity observed in the HEMP catalyst.Electrochemical measurements demonstrate that the HEMP-0.75 catalyst with an ultralow loading of 1.22 wt%ruthenium(Ru)exhibits the highest HER catalytic activity and stability in a 1 M KOH electrolyte,achieving a minimal overpotential of 26 mV at a current density of 10 mA·cm^(-2)and Tafel slope of 50.9 mV·dec^(-1).展开更多
Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction ...Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction kinetics and structural instability.This study overcomes these challenges by implementing a rapid,energy-efficient approach to develop a MOF-modulated MnP@Cu_(3)P heterostructure via a hydrothermal process followed by high-temperature phosphorization.The heterostructure demonstrates superior redox activity with enhanced stability and improved charge kinetics achieving a high specific capacity of 1131 C g^(-1)as supported by density functional theory findings of increased DOS near the Fermi level.The flexible supercapacitor achieves a peak energy density of 99.20 Wh kg^(-1)and power density of 15.40 kW kg^(-1).Simultaneously,it shows exceptional hydrogen evolution reaction performance with an overpotential of η_(10)=44 mV and η_(1000)=225 mV,attributed to electron transfer from Cu to Mn via P bridging,which shifts the active centers from Mn and Cu sites to the P site,confirmed by lowestΔG_(H)^(*)value of-0.16 eV.The overall water-splitting in full-cell electrocatalyzer delivers cell voltage of E_(20)=1.48 V and E_(1000)=1.88 V and setting a new standard in solar-to-hydrogen efficiency of 20.02%.The electrolyzer cell maintained prolonged stability at industrial-scale current densities of 1.0 A cm^(-2)under alkaline electrolysis achieving an estimated hydrogen production cost of INR 146.7 or US$1.67per kilogram aligning with the cost target of $2/kg by 2026 established by the Clean Hydrogen Electrolysis Program,U.S.department of energy.Furthermore,real-phase demonstration highlights the uninterrupted hydrogen production till 6-minutes via connecting this electrocatalyzer with photovoltaic-charged supercapacitors effectively addressing solar intermittency and gas fluctuations challenges in water-electrolysis.展开更多
The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with ...The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with abundant active sites and strong chemisorption capability for LiPSs,is regarded as effective strategy to address these issues.Herein,Se-doping is introduced into the nitrogen-doped carbon coated CoP composite(Se-CoP@NC)to generate structural defects,which effectively enlarges the lattice spacing of CoP and reduces the conversion reaction energy barriers of LiPSs.Meanwhile,Se-doping sites bridges the interface of CoP and nitrogen-doped carbon,accelerating the charge transfer behavior and conversion reaction kinetics of LiPSs.Benefiting from the structural advantages,the assembled Li-S batteries with S/Se-CoP@NC as cathode exhibit high reversible capacity of 779.6 mAh/g at 0.5 C after 500 cycles,and high specific capacity of 805.9 mAh/g at 2 C.Even under extreme conditions(high sulfur-loading content of 6.9 mg/cm^(2);lean electrolyte dosage of 7μL/mg),the corresponding Li-S batteries also keep high reversible areal capacity of 4.5 mAh/cm^(2) after 100 cycles at 0.1 C.This work will inspire the design of metal compounds-based catalysts from atomic level to facilitate the practicability of Li-S batteries.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanos...Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.展开更多
Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further...Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.展开更多
Transition metal phosphides hold great potential as sodium-ion batteries anode materials owing to their high theoretical capacity and modest plateau.However,volume changes and low intrinsic conductivity seriously larg...Transition metal phosphides hold great potential as sodium-ion batteries anode materials owing to their high theoretical capacity and modest plateau.However,volume changes and low intrinsic conductivity seriously largely hinder the further development of metal phosphide anodes.The design of phosphide anode materials with reasonable structure is conducive to solving the problems of volume expansion and slow reaction kinetics during the reaction.In this work,a composite material integrating zeolite imidazolate backbone(ZIF) and carbon materials was synthesized by the original growth method.Furthermore,by the oxidation-phosphating process,CoP nanoarray composites riveted to carbon fiber(CoP@CF) were obtained.In the CoP@CF,CoP nanoparticles are uniformly distributed on ZIF-derived carbon,reducing agglomeration and volume change during cycling.CF also provides a highly conductive network for the active material,improving the electrode kinetics.Therefore,when evaluated as an anode for sodium-ion batteries,CoP@CF electrode displays enhanced reversible capacity(262 mAh·g^(-1) at 0.1 A·g^(-1)after 100 cycles),which is much better than that of pure CF electrode(57 mAh·g^(-1) at 0.1 A·g^(-1) after 100 cycles)prepared without the addition of CoP.The rate performance of CoP@CF electrode is also superior to that of pure CF electrode at various current densities from 0.05 to1 A·g^(-1).The sodium storage behavior of CoP@CF was revealed by ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,and synchrotron radiation absorption spectroscopy.This method provides a reference for the design and synthesis of anode materials in sodium-ion batteries.展开更多
The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan...The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.展开更多
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s...Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.展开更多
One key step for advancing the widespread practical application of rechargeable metal-air batteries and water electrolysis fundamentally relies on the development of cost-effective multifunctional electrocata-lysts to...One key step for advancing the widespread practical application of rechargeable metal-air batteries and water electrolysis fundamentally relies on the development of cost-effective multifunctional electrocata-lysts toward oxygen and hydrogen-involving reactions.The present work initiates a tofu-derived one-pot strategy for green,facile,and mass production of highly active and stable catalyst toward oxygen reduc-tion/evolution and hydrogen evolution reactions,through the preparation of Fe/Co cross-linked tofu gel and the subsequent pyrolysis.Despite the free use of additional N/P precursors or pore-forming agents,the as-prepared materials comprise highly dispersive FeCo-rich phosphides nanoparticles and porous N,P co-doped carbon network inherited from the tofu skeleton.The resultant catalysts exhibit remarkably enhanced trifunctional activities as compared to the Fe_(2)P and Co_(2)P counterparts,along with better long-term stabilities than the benchmark RuO_(2)and Pt/C catalysts.Accordingly,the as-assembled Zn-air battery delivers a large power density(174 mW cm^(-2))with excellent cycle stability(the gap of charge/discharge voltage@10 mA cm^(-2)increases by 0.01 V after 720 h of operation,vs.0.16 V of Pt/C-RuO_(2)based battery after 378 h).Furthermore,the as-constructed alkaline electrolyzer just requires a small voltage of 1.55 V@10 mA cm^(-2),which outperforms nearly all of those of biomass-derived electrocatalysts ever reported,and that of noble metal catalysts-based electrolyzers(1.72 V@10 mA cm^(-2)for Pt/C-RuO_(2)),underscoring their bright future toward commercial applications in green energy conversion devices.展开更多
In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying ...In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying parameters of temperature(298–328 K),pH(2–12),contact time(0–120 min),adsorbent dose(0.01–0.20 g/50 mL),and dye concentration(10–50 mg/L).Different isotherm and kinetic models were applied to the adsorption data.The linear correlations coefficient showed that the Langmuir isotherm best fits(R^(2)=0.9996).The maximum adsorption capacity of BP was obtained as 555.56 mg/g at 55℃and the removal rate reached up to 84.11%.Additionally,the pseudo-second-order kinetic model described the adsorption process best(R^(2)=0.9998).The thermodynamic studies represented that the adsorption occurred spontaneously(ΔG_(A)^(Θ)=−24.90 kJ/mol)and endothermically(ΔH_(A)^(Θ)=16.67 kJ/mol).The results showed that BP is an efficient adsorbent for removing cationic dyes from aqueous solutions.展开更多
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o...The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.展开更多
基金National Natural Science Foundation of China (Nos. 42276035, 22309030)Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012589,2020A1515110473)Key Plat Form Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (Nos. 2019GCZX002, 2020KCXTD011)。
文摘Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.
基金supported by the Regional Leading Research Center Program(2019R1A5A8080326)funding from the Basic Science Research Program(2021R1F1A1048758,2022R1I1A1A01053248)+1 种基金the Regional Innovation Strategy(RIS)(2023RIS-008)through the National Research Foundation of Korea(NRF),funded by the Ministry of Educationsupported by the National Supercomputing Center,which provided supercomputing resources and technical support(TS-2024-RE-0039)。
文摘Green hydrogen is crucial for advancing renewable energy technologies and protecting the environment.This study introduces a controllable method for bimetallic nickel-cobalt phosphide on reduced graphene oxide on nickel foam(NiCo_(3)P.C/NF).The material demonstrated low overpotentials of 58 and 180 mV at10 mA cm^(-2)for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in 1.0 M KOH.It achieved excellent electrochemical water-splitting performance with operating voltages of 1.54 and 2.6 V at 10 and 500 mA cm^(-2),respectively.The overall water-splitting performance of NiCo_(3).C/NF was extremely stable after 75 h of operation at 53 mA cm^(-2),retaining 98%efficiency,better than the sample Pt-C+RuO_(2),and outperforming previous reports.Density functional theory(DFT)results revealed a synergistic NiCo_(3)P.C interaction that yields nearly zero Gibbs free energy change(-0.100 eV)and upshift d-band center,the real active site at the Ni in HER,and the lowest overpotentials 0.26 V at the P active sites for OER.Furthermore,electronic charge distribution shows the maximum charge distribution between the NiCo_(3)P phase and graphene sheet heterojunction,enhancing the electrocatalyst conductivity.This combined approach offers an innovative strategy to design sustainable electrocatalysts for water s plitting.
基金support from the National Natural Science Foundation of China(U21A20174)the Fundamental Research Program of Shanxi Province(202203021221049)+3 种基金the Science and Technology Innovation Talent Team Project of Shanxi Province(202304051001010)support from the Shenzhen Science and Technology Program(RCBS20221008093340100)support from the Australian Research Council(ARC)Discovery Early Career Researcher Award(DE230101068)support from the ARC Research Hub for Safe and Reliable Energy(IH200100035)。
文摘Cobalt phosphides are potential catalysts to assist the conversion of lithium polysulfides(LiPSs)in lithium-sulfur(Li-S)batteries.However,existing synthesis methods have difficulty precisely tuning their band valences,which is crucial to balancing intermediate products'adsorption and conversion abilities in Li-S batteries.Moreover,studies on the relationship between their band structures and electrochemical performance are limited.Herein,we report cobalt phosphides(Co_(x)P)with a heterogeneous interface of CoP/Co2P embedded in hollow carbon nanofibers(denoted as Co_(x)P@HCNF)via a one-step sequential phosphorization and carbonization strategy,which is applied as an effective interlayer for Li-S batteries.The Co band valence in CoxP was adjusted to regulate the d-p band gap.Theoretical calculations predict that Co_(x)P with a narrowed d-p band center can optimize the electron transfer kinetics and the adsorption affinity with LiPSs.Li-S full cells with a Co_(x)P@HCNF interlayer demonstrated a high specific capacity of1265 mA h g^(-1)at 0.2C and excellent cycle stability of 788 mA h g^(-1)over 400 cycles at 2.0C.A cell with a lean electrolyte(6.0μL mg^(-1))and a high sulfur loading(6.2 mg cm^(-2))delivered a high areal capacity of4.5 mA h cm^(-2)at 0.5C.This study demonstrates that bimetallic coupling-induced electronic-state modulation effectively balances the chemical adsorption and catalytic capability for developing high-performance Li-S batteries.
基金supported by the National Natural Science Foundation of China(No.52373249,W2433146)the Science and Technology Project of Yibin Sanjiang New Area(No.2023SJXQSXZJ003)the Fundamental Research Funds for the Central Universities(No.20822041F4045).
文摘Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures can effectively promote electron/ion transport.However,the complex evolution of phosphidation and intractable phosphidizing degree greatly affect the composition of active phase,active sites,charge transfer rate,and ion adsorption strength of cathodes.Herein,the critical bimetallic phosphide layer(CBPL)is constructed on the NiCo-layered double hydroxide(NiCo-LDH)skeleton by a controllable anion-exchange strategy,yielding a novel nanohybrid cathode(NiCo-P1.0,1.0 representing the mass ratio of Na_(2)H_(2)PO_(2)to NiCo-LDH).The high-conductivity CBPL with the inner NiCo-LDH forms extensive heterostructures,effectively regulating the electronic structure via charge transfer,thereby improving electrical conductivity.Remarkably,the CBPL exhibits unexpected electrochemical activity and synergizes with NiCo-LDH for electrode reactions,ultimately delivering extra energy.Benefiting from the bifunctional CBPL,NiCo-P1.0 delivers an optimal capacity of 286.64 mAh g^(−1)at 1C(1C=289 mAh g^(−1))and superb rate performance(a capacity retention of 72.22%at 40C).The assembled NiCo-P1.0//Zn battery achieves ultrahigh energy/power density(503.62 Wh kg^(−1)/18.62 kW kg^(−1),based on the mass loading of active material on the cathode),and the flexible quasi-solid-state pouch cell validates its practicality.This work demonstrates the superiority of bifunctional CBPL for surface modification,providing an effective and scalable compositing strategy in achieving high-performance cathodes for aqueous batteries.
基金supported by the Frontier Exploration Projects of Longmen Laboratory(No.LMQYTSKT008)the Program for Science and Technology Innovation Talents in Universities of Henan Province(Nos.22HASTIT008 and 24HASTIT006)+2 种基金the Natural Science Foundations of Henan Province(Nos.222300420502 and 242300420045)the Programs for Science and Technology Development of Henan Province(No.242102240066)the Key Scientific Research Projects of University in Henan Province(No.23B430002)。
文摘Electrochemical water splitting is a highly promising approach for producing carbon-neutral hydrogen.The development of efficient electrocatalysts for the hydrogen evolution reaction(HER)is crucial to lowering the energy barriers and enhancing hydrogen production.This drives the search for HER electrocatalysts that are not only cost-effective and abundant but also exhibit high activity and long-term stability.In this review,we provide an in-depth analysis of recent progress in the application of ruthenium phosphides as HER electrocatalysts,offering key insights into their design and performance.Meanwhile,we explore various strategies to enhance their catalytic efficiency,such as increasing the availability of active sites and optimizing their electronic structure.Finally,we outline the key challenges and future directions for developing the next generation of ruthenium phosphide-based HER electrocatalysts.
基金Self-innovation Capability Construction of Jilin Province Development and Reform Commission,Grant/Award Number:2021C026National Natural Science Foundation of China,Grant/Award Numbers:12034002,22202080,22279044,51872116Jilin Province Science and Technology Development Program,Grant/Award Number:20210301009GX。
文摘Strain effects have garnered significant attention in catalytic applications due to their ability to modulate the electronic structure and surface adsorption properties of catalysts.In this study,we propose a novel approach called“similar stacking”for stress modulation,achieved through the loading of Co_(2)P on Ni_(2)P(Ni_(2)P/Co_(2)P).Theoretical simulations reveal that the compressive strain induced by Co_(2)P influences orbital overlap and electron transfer with hydrogen atoms.Furthermore,the number of stacked layers can be adjusted by varying the precursor soaking time,which further modulates the strain range and hydrogen adsorption.Under a 2-h soaking condition,the strain effect proves favorable for efficient hydrogen production.Experimental characterizations using X-ray diffraction,high-angel annular dark-field scanning transmission election microscope(HAADF-STEM),and X-ray absorption near-edge structure spectroscopy successfully demonstrate lattice contraction of Co_(2)P and bond length shortening of Co-P.Remarkably,our catalyst shows an ultrahigh current density of 1 A cm^(-2) at an overpotential of only 388 mV,surpassing that of commercial Pt/C,while maintaining long-term stability.This material design strategy of similar stacking opens up new avenues of strain modulation and the deeper development of electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.22103045 and 52273077)the State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University(Nos.ZDKT202108,RZ2000003334 and G2RC202022)support from the Australian National Fabrication Facility’s Queensland Node(No.ANFF-Q),the UQ-Yonsei International Research Project,and the JST-ERATO Yamauchi Materials Space-Tectonics Project(No.JPMJER2003).
文摘High-entropy metal phosphide(HEMP)has considerable potential as an electrocatalyst owing to its beneficial properties,including high-entropy alloy synergy as well as the controllable structure and high conductivity of phosphides.Herein,electrospinning and in situ phosphating were employed to prepare three-dimensional(3D)networks of self-supporting HEMP nanofibers with varying degrees of phosphate content.Comprehensive characterizations via X-ray diffraction and X-ray photoelectron spectroscopy,as well as density functional theory calculations,demonstrate that the introduction of phosphorus(P)atoms to HEMP carbon nanofibers mediates their electronic structure,leads to lattice expansion,which in turn enhances their catalytic performance in the hydrogen evolution reaction(HER).Moreover,the formation of metal-P bonds weakens metal-metal interaction and decreases the free energy of hydrogen adsorption,contributing to the exceptional activity observed in the HEMP catalyst.Electrochemical measurements demonstrate that the HEMP-0.75 catalyst with an ultralow loading of 1.22 wt%ruthenium(Ru)exhibits the highest HER catalytic activity and stability in a 1 M KOH electrolyte,achieving a minimal overpotential of 26 mV at a current density of 10 mA·cm^(-2)and Tafel slope of 50.9 mV·dec^(-1).
基金supported financially by the Ministry of Textiles(Grant No-2/3/2021-NTTM(Pt.)),Govt.of India。
文摘Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction kinetics and structural instability.This study overcomes these challenges by implementing a rapid,energy-efficient approach to develop a MOF-modulated MnP@Cu_(3)P heterostructure via a hydrothermal process followed by high-temperature phosphorization.The heterostructure demonstrates superior redox activity with enhanced stability and improved charge kinetics achieving a high specific capacity of 1131 C g^(-1)as supported by density functional theory findings of increased DOS near the Fermi level.The flexible supercapacitor achieves a peak energy density of 99.20 Wh kg^(-1)and power density of 15.40 kW kg^(-1).Simultaneously,it shows exceptional hydrogen evolution reaction performance with an overpotential of η_(10)=44 mV and η_(1000)=225 mV,attributed to electron transfer from Cu to Mn via P bridging,which shifts the active centers from Mn and Cu sites to the P site,confirmed by lowestΔG_(H)^(*)value of-0.16 eV.The overall water-splitting in full-cell electrocatalyzer delivers cell voltage of E_(20)=1.48 V and E_(1000)=1.88 V and setting a new standard in solar-to-hydrogen efficiency of 20.02%.The electrolyzer cell maintained prolonged stability at industrial-scale current densities of 1.0 A cm^(-2)under alkaline electrolysis achieving an estimated hydrogen production cost of INR 146.7 or US$1.67per kilogram aligning with the cost target of $2/kg by 2026 established by the Clean Hydrogen Electrolysis Program,U.S.department of energy.Furthermore,real-phase demonstration highlights the uninterrupted hydrogen production till 6-minutes via connecting this electrocatalyzer with photovoltaic-charged supercapacitors effectively addressing solar intermittency and gas fluctuations challenges in water-electrolysis.
基金the financial support from the National Natural Science Foundation of China(No.52101250)the S&T program of Hebei(Nos.215A4401D and 225A4404D)+5 种基金the Collaborative Innovation Center of Marine Science and Technology of Hainan University(No.XTCX2022HYC14)the Fundamental Research Funds for the Hebei University(No.2021YWF11)the Science Research Project of Hebei Education Department(No.QN2024087)the Xingtai City Natural Science Foundation(No.2023ZZ027)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),College of Chemistry,Nankai Universitypartially supported by the Pico Election Microscopy Center of Hainan University。
文摘The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with abundant active sites and strong chemisorption capability for LiPSs,is regarded as effective strategy to address these issues.Herein,Se-doping is introduced into the nitrogen-doped carbon coated CoP composite(Se-CoP@NC)to generate structural defects,which effectively enlarges the lattice spacing of CoP and reduces the conversion reaction energy barriers of LiPSs.Meanwhile,Se-doping sites bridges the interface of CoP and nitrogen-doped carbon,accelerating the charge transfer behavior and conversion reaction kinetics of LiPSs.Benefiting from the structural advantages,the assembled Li-S batteries with S/Se-CoP@NC as cathode exhibit high reversible capacity of 779.6 mAh/g at 0.5 C after 500 cycles,and high specific capacity of 805.9 mAh/g at 2 C.Even under extreme conditions(high sulfur-loading content of 6.9 mg/cm^(2);lean electrolyte dosage of 7μL/mg),the corresponding Li-S batteries also keep high reversible areal capacity of 4.5 mAh/cm^(2) after 100 cycles at 0.1 C.This work will inspire the design of metal compounds-based catalysts from atomic level to facilitate the practicability of Li-S batteries.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by the Natural Science Foundation of Henan Province(No.202300410433)the College Students’Innovative Entrepreneurial Training(No.2022cxcy029),ChinaHirosaki University,Japan,are appreciated.
文摘Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.
基金the China Scholarship Council(CSC)for the financial support(202206230096)D.Yu would like to thank the CSC for the Doctor scholarship(202006360037)+1 种基金J.Dutta would like to acknowledge the partial financial support of VINNOVA project no.2021-02313.PZhang would like to acknowledge partial financial support from the National Natural Science Foundation of China(Nos 52111530187,51972210).
文摘Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
基金financially supported by the National Natural Science Foundation of China (No.52250710161)supported by Beijing Synchrotron Radiation 4B9A Work Station in China。
文摘Transition metal phosphides hold great potential as sodium-ion batteries anode materials owing to their high theoretical capacity and modest plateau.However,volume changes and low intrinsic conductivity seriously largely hinder the further development of metal phosphide anodes.The design of phosphide anode materials with reasonable structure is conducive to solving the problems of volume expansion and slow reaction kinetics during the reaction.In this work,a composite material integrating zeolite imidazolate backbone(ZIF) and carbon materials was synthesized by the original growth method.Furthermore,by the oxidation-phosphating process,CoP nanoarray composites riveted to carbon fiber(CoP@CF) were obtained.In the CoP@CF,CoP nanoparticles are uniformly distributed on ZIF-derived carbon,reducing agglomeration and volume change during cycling.CF also provides a highly conductive network for the active material,improving the electrode kinetics.Therefore,when evaluated as an anode for sodium-ion batteries,CoP@CF electrode displays enhanced reversible capacity(262 mAh·g^(-1) at 0.1 A·g^(-1)after 100 cycles),which is much better than that of pure CF electrode(57 mAh·g^(-1) at 0.1 A·g^(-1) after 100 cycles)prepared without the addition of CoP.The rate performance of CoP@CF electrode is also superior to that of pure CF electrode at various current densities from 0.05 to1 A·g^(-1).The sodium storage behavior of CoP@CF was revealed by ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,and synchrotron radiation absorption spectroscopy.This method provides a reference for the design and synthesis of anode materials in sodium-ion batteries.
文摘The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074273)the Sichuan Science and Technology Program(Grant No.2022NSFSC1810)。
文摘Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.
基金supported by the National Natural Science Fund for Distinguished Young Scholars(No.52025041)supported by the National Natural Sci-ence Foundation of China(Nos.51702176 and 51974021)+1 种基金Zhejiang Provincial Nature Science Foundation(No.LY20E020009)the Interdisciplinary Research Project for Young Teachers of USTB(Fun-damental Research Funds for the Central Universities,No.FRF-IDRY-21-028).
文摘One key step for advancing the widespread practical application of rechargeable metal-air batteries and water electrolysis fundamentally relies on the development of cost-effective multifunctional electrocata-lysts toward oxygen and hydrogen-involving reactions.The present work initiates a tofu-derived one-pot strategy for green,facile,and mass production of highly active and stable catalyst toward oxygen reduc-tion/evolution and hydrogen evolution reactions,through the preparation of Fe/Co cross-linked tofu gel and the subsequent pyrolysis.Despite the free use of additional N/P precursors or pore-forming agents,the as-prepared materials comprise highly dispersive FeCo-rich phosphides nanoparticles and porous N,P co-doped carbon network inherited from the tofu skeleton.The resultant catalysts exhibit remarkably enhanced trifunctional activities as compared to the Fe_(2)P and Co_(2)P counterparts,along with better long-term stabilities than the benchmark RuO_(2)and Pt/C catalysts.Accordingly,the as-assembled Zn-air battery delivers a large power density(174 mW cm^(-2))with excellent cycle stability(the gap of charge/discharge voltage@10 mA cm^(-2)increases by 0.01 V after 720 h of operation,vs.0.16 V of Pt/C-RuO_(2)based battery after 378 h).Furthermore,the as-constructed alkaline electrolyzer just requires a small voltage of 1.55 V@10 mA cm^(-2),which outperforms nearly all of those of biomass-derived electrocatalysts ever reported,and that of noble metal catalysts-based electrolyzers(1.72 V@10 mA cm^(-2)for Pt/C-RuO_(2)),underscoring their bright future toward commercial applications in green energy conversion devices.
文摘In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying parameters of temperature(298–328 K),pH(2–12),contact time(0–120 min),adsorbent dose(0.01–0.20 g/50 mL),and dye concentration(10–50 mg/L).Different isotherm and kinetic models were applied to the adsorption data.The linear correlations coefficient showed that the Langmuir isotherm best fits(R^(2)=0.9996).The maximum adsorption capacity of BP was obtained as 555.56 mg/g at 55℃and the removal rate reached up to 84.11%.Additionally,the pseudo-second-order kinetic model described the adsorption process best(R^(2)=0.9998).The thermodynamic studies represented that the adsorption occurred spontaneously(ΔG_(A)^(Θ)=−24.90 kJ/mol)and endothermically(ΔH_(A)^(Θ)=16.67 kJ/mol).The results showed that BP is an efficient adsorbent for removing cationic dyes from aqueous solutions.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2022XJHH02)the National Key Research and Development Program of China(No.2019YFC1907602).
文摘The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.