BACKGROUND Chronic hepatitis B often progresses silently toward hepatocellular carcinoma(HCC),a leading cause of mortality worldwide.Early detection of HCC is crucial,yet challenging.AIM To investigate the role of dyn...BACKGROUND Chronic hepatitis B often progresses silently toward hepatocellular carcinoma(HCC),a leading cause of mortality worldwide.Early detection of HCC is crucial,yet challenging.AIM To investigate the role of dynamic changes in alkaline phosphatase to prealbumin ratio(APR)in hepatitis B progression to HCC.METHODS Data from 4843 patients with hepatitis B(January 2015 to January 2024)were analyzed.HCC incidence rates in males and females were compared using the log-rank test.Data were evaluated using Kaplan–Meier analysis.The Linear Mixed-Effects Model was applied to track the fluctuation of APR levels over time.Furthermore,Joint Modeling of Longitudinal and Survival data was employed to investigate the temporal relationship between APR and HCC risk.RESULTS The incidence of HCC was higher in males.To ensure the model’s normality assumption,this study applied a logarithmic transformation to APR,yielding ratio.Ratio levels were higher in females(t=5.26,P<0.01).A 1-unit increase in ratio correlated with a 2.005-fold higher risk of HCC in males(95%CI:1.653-2.431)and a 2.273-fold higher risk in females(95%CI:1.620-3.190).CONCLUSION Males are more prone to HCC,while females have higher APR levels.Despite no baseline APR link,rising APR indicates a higher HCC risk.展开更多
Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subseq...Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.展开更多
BACKGROUND Colorectal cancer(CRC)is a prevalent gastrointestinal malignancy,with its pathogenesis involving dysregulation of multiple genes,including adenomatous polyposis coli and p53.Emerging evidence suggests that ...BACKGROUND Colorectal cancer(CRC)is a prevalent gastrointestinal malignancy,with its pathogenesis involving dysregulation of multiple genes,including adenomatous polyposis coli and p53.Emerging evidence suggests that microRNA 195(miR195)plays a critical role in carcinogenesis by modulating the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(AKT)signaling pathway through phosphatase and tensin homologue(PTEN),thereby influencing cellular metabolism.Loss of PTEN function leads to hyperactivation of PI3K/AKT signaling pathway,resulting in upregulated expression of lactate dehydrogenase-5(LDH-5)and promoting the tumor progression.AIM To explore the clinical relevance of miR195,LDH-5,and PTEN expression patterns in CRC patient tissues and their association with clinicopathological features and prognosis.METHODS We enrolled 53 CRC patients who received surgical resection at our hospital from January 2020 to February 2022.Fresh tumor tissues and paired adjacent normal tissues(>5 cm from the tumor margin)were collected.The mRNA expression of miR195 was quantified by real-time quantitative polymerase chain reaction,while the protein expression of LDH-5 and PTEN were assessed via immunohistochemistry.Differences in molecular expression between tumor and adjacent normal tissues were compared,along with their correlations with clinicopathological parameters and prognosis.RESULTS The positive rate of miR195 in CRC tissues(35.85%)was significantly lower than that in adjacent normal tissues(90.57%).LDH-5 displayed a higher positive rate(79.25%)in the tissues compared to normal tissues(11.32%),while PTEN expression was markedly reduced in tumors(28.30%vs 94.34%,P<0.05).Elevated expression of miR195 was observed in CRC tissues from patients with earlier tumor,node,metastasis(TNM)stages and without lymph node metastasis.Conversely,higher expression of LDH-5 was associated with advanced TNM stages,lower differentiation grades,and the presence of lymph node metastasis.Additionally,PTEN expression was higher in patients with smaller tumor diameters and no lymph node metastasis(P<0.05).In CRC tissues,miR195 showed a negative correlation with LDH-5(r=-0.883,P=0.015)but a positive correlation with PTEN(r=0.429,P=0.006).LDH-5 was negatively associated with PTEN(r=-0.396,P<0.001).Patients with miR195 positivity,LDH-5 negativity,and PTEN positivity demonstrated significantly better prognosis(P<0.05).CONCLUSION Low miR195 and PTEN expression,coupled high LDH-5 expression could constitutes a hallmark molecular signature of CRC progression.These signature may act as potential markers for diagnosis and disease assessment,and prognostic evaluation in CRC patients,eventually improving CRC management.展开更多
BACKGROUND Centromere protein A(CENPA)exhibits an increased expression level in primary human rectal cancer tissues,but its role has not been investigated.AIM To clarify the specific role and mechanism of CENPA in rec...BACKGROUND Centromere protein A(CENPA)exhibits an increased expression level in primary human rectal cancer tissues,but its role has not been investigated.AIM To clarify the specific role and mechanism of CENPA in rectal cancer progression.METHODS CENPA protein expression in rectal cancer tissues and cell lines were detected.CENPA was overexpressed and knocked down in SW837 and SW480 cells,and proliferation,invasion,apoptosis and epithelial-mesenchymal transition(EMT)marker protein levels were examined.O6-methylguanine DNA methyltransferase(MGMT)promoter methylation was assessed with methylation-specific poly-merase chain reaction.Co-immunoprecipitation assay verified the interaction between MGMT and protein tyrosine phosphatase nonreceptor type 4(PTPN4).SW837 cells with CENPA knockdown were injected subcutaneously into mice,and tumor growth was examined.RESULTS CENPA was upregulated in rectal cancer tissues and cell lines.CENPA overex-pression promoted proliferation,invasion and EMT,and inhibited apoptosis in rectal cancer cells.Whereas CENPA knockdown showed the opposite results.Moreover,CENPA inhibited MGMT expression by promoting DNA methyltrans-ferase 1-mediated MGMT promoter methylation.MGMT knockdown abolished the CENPA knockdown-mediated inhibition of rectal cancer cell progression.MGMT increased PTPN4 protein stability by inhibiting PTPN4 ubiquitination degradation via competing with ubiquitin-conjugating enzyme E2O for interacting with PTPN4.PTPN4 knockdown abolished the inhibitory effects of MGMT overexpression on rectal cancer cell progression.Moreover,CENPA knockdown inhibited xenograft tumor growth in vivo.CONCLUSION CENPA knockdown inhibited rectal cancer cell growth and attenuated xenograft tumor growth through regulating the MGMT/PTPN4 axis.展开更多
The traditional nanozymes-based ratiometric fluorescence sensing platforms usually necessitate the supplementary addition of fluorescent probes,therefore greatly restricting its convenient and broad application.In thi...The traditional nanozymes-based ratiometric fluorescence sensing platforms usually necessitate the supplementary addition of fluorescent probes,therefore greatly restricting its convenient and broad application.In this study,a highly sensitive and selective ratiometric fluorescence platform for alkaline phosphatase(ALP)detection was established,only employing Prussian blue(PB)nanozymes and a commercially available chromogen of o-phenylenediamine(OPD).PB nanozymes with remarkable peroxidaselike(POD-like)activity can effectively catalyze OPD chromogen to yield 2,3-diaminophenazine(OPDox)with an intense yellow fluorescence at 573 nm emission peak.Target ALP can facilitate ascorbic acid 2-phosphate(AAP)dephosphorylation to generate phosphate and ascorbic acid(AA).Significantly,both these two resultant hydrolysis products could effectively decrease the OPDox generation via a dualpath based inhibition on the PB nanozymes POD-like activity.On the other hand,the generated dehydroascorbic acid(DHAA)from AA oxidation would exclusively react with OPD chromogen to yield3-(dihydroxyethyl)furo[3,4-b]quinoxaline-1-one(DFQ)with a strong blue fluorescent signal at 434nm,which further providing a significant enhancement on the sensing selectivity of ALP detection.As a result,an increased yellow fluorescence of OPDox and decreased blue fluorescence of DFQ could be clearly observed with different ALP addition.A robust linear relationship between the fluorescence ratio of F_(434)/F_(573)and ALP activity ranging from 0.25U/L to 6U/L was obtained,with a low detection limit of 0.112 U/L.This proposed method demonstrates high sensitivity,excellent selectivity,cost-effectiveness,and operational simplicity,yet enabling an effective detection of ALP levels in human serum.展开更多
Objective:To investigate the mechanism by which advanced glycation end products(AGEs)promote diabetic kidney disease fibrosis by regulating the tyrosine phosphatase SHP1/SHP2 balance and activating the epidermal growt...Objective:To investigate the mechanism by which advanced glycation end products(AGEs)promote diabetic kidney disease fibrosis by regulating the tyrosine phosphatase SHP1/SHP2 balance and activating the epidermal growth factor receptor(EGFR)pathway.Methods:Animal experiments and in vitro cell experiments were conducted using Western blot analysis and tissue cell staining to detect the expression of relevant proteins and cellular morphological changes.Results:AGEs disrupt the SHP1/SHP2 balance,activate the EGFR and TGFβpathways,and promote fibrosis in diabetic nephropathy.Conclusion:AGEs regulate the balance of tyrosine phosphatases SHP1/SHP2,activate the EGFR-mediated signaling pathway,promote the release of inflammatory factors,and ultimately lead to fibrosis in diabetic nephropathy through a novel mechanism.展开更多
This review focuses on the metabolic issues related to mitochondrial pyruvate dehydrogenase phosphatase(PDP)in malignant tumors and its potential mechanisms.Recent research on tumor metabolic mechanisms has shown that...This review focuses on the metabolic issues related to mitochondrial pyruvate dehydrogenase phosphatase(PDP)in malignant tumors and its potential mechanisms.Recent research on tumor metabolic mechanisms has shown that PDP dysregulation is closely linked to metabolic reprogramming in tumor cells,and potentially promotes tumor.Research has comprehensively explored the structural-functional characteristics of PDP,its metabolic regulatory mechanisms,and its role in various types of malignant tumors.Nevertheless,several questions still exist regarding its potential mechanisms within acetylation,phosphorylation,hypoxia,immune infiltration,mitochondrial metabolism,drug resistance,oxidative phosphorylation,and tumor prognosis.This article intends to summarize the latest research,examine PDP’s potential as a therapeutic target,and propose future research directions to enhance cancer treatment strategies.展开更多
In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers ar...In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology.PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity.Accordingly,early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction.On the other hand,recent studies have indicated that PTPN2 has many different roles in different cancer types,which is associated with the complexity of its regulatory network.PTPN2 dephosphorylates and inactivates EGFR,SRC family kinases,JAK1 and JAK3,and STAT1,STAT3,and STAT5 in cell type-and context-dependent manners,which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype.While PTPN2 has been suggested as a potential therapeutic target in cancer treatment,to the best of ourknowledge,no clear treatment protocol has referred to PTPN2.Although there are only few studies that investigated PTPN2 expression in the GI system cancers,which is a potential limitation,the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers.In conclusion,more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors,especially in tumors resistant to therapy.展开更多
Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infecte...Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infected by eating undercooked meat of animals containing the tissue cysts of this parasite.In immune-competent individuals,T.展开更多
The distribution of acid phosphatase activity in nucellar cells of wheat ( Triticum aestivum L.) during degeneration has been studied using the lead precipitation method at the electron microscopic level. Acid phos...The distribution of acid phosphatase activity in nucellar cells of wheat ( Triticum aestivum L.) during degeneration has been studied using the lead precipitation method at the electron microscopic level. Acid phosphatase was localized in the slightly condensed nuclear chromatin in nucellar cells without any sign of ultrastructural degeneration. As the nucellar cells started degenerating, the enzyme activity in the cell was observed, in the order from small vacuoles to cell walls, mitochondria, plastids and endoplasmic reticulum. Enzyme activity was the highest in most components of the nucellar cells adjacent to the embryo sac where the degeneration of nucellar cells was the strongest, but it was not observed in the nuclei of the degenerated nucellar cells. The results indicated that the degeneration of nucellar cells was a progressive and orderly process and supported that the degeneration of nucellar cells was a programmed cell death.展开更多
[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used ...[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.展开更多
[Object] The study aimed to supply a reference for evaluating ecotoxicology of soil contaminated with phthalate acid esters(PAEs).[Method] The dynamic effects of DBP and DEHP on activities and kinetics parameters of u...[Object] The study aimed to supply a reference for evaluating ecotoxicology of soil contaminated with phthalate acid esters(PAEs).[Method] The dynamic effects of DBP and DEHP on activities and kinetics parameters of urease and phosphatase in agro-soil contaminated artificially with DBP and DEHP were studied.[Result] The activities of urease and phosphatase were both inhibited significantly by higher contents of DBP and DEHP in soils compared with CK.The inhabitations increased with increasing DBP and DEHP c...展开更多
Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cement...Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enppl null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enppl gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.展开更多
Due to their toxicity,the increased distribution of microcystins(MCs) has become an important worldwide problem.MCs have been recognized as inhibitors of protein phosphatase 2A(PP2A) through their binding to the PP2A ...Due to their toxicity,the increased distribution of microcystins(MCs) has become an important worldwide problem.MCs have been recognized as inhibitors of protein phosphatase 2A(PP2A) through their binding to the PP2A catalytic subunit.However,the exact mechanism of MC toxicity has not been elucidated,especially concerning the cellular response and its autoregulation.To further dissect the role of PP2A in MC-induced toxicity,the present study was undertaken to determine the response of PP2A in human amniotic epithelial(FL) cells treated with microcystin-LR(MCLR),one of the MC congeners.The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity,and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A,as expected.The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A.Furthermore,MCLR altered microtubule post-translational modifications through PP2A.These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR.展开更多
Ultrastructural cytochemical techniques and electron microscopy were used for localization of acid phosphatase activity during spermiogenesis in Eriocheir sinemsis. The results showed that: Acid phosphatase was synth...Ultrastructural cytochemical techniques and electron microscopy were used for localization of acid phosphatase activity during spermiogenesis in Eriocheir sinemsis. The results showed that: Acid phosphatase was synthesized in the endoplasmic reticulum in the early spermatids. The acid phosphatase was found gradually in nucleus, the membrane of acrosomal vesicle, the cytoplasmic region and the acrosomal tubule. And then the reaction product particles became thicker during the spermiogenesis. In the mature sperm, acid phosphatase was localized in the percutor organ slightly, but it was massive and compact in the acrosomal tubule.展开更多
An organic layer prepared from the seed of Aceriphyllum rossii was studied to identify the active compounds for protein tyrosine phosphatase 1B(PTP1B) inhibition.Bioassay guided fractionation resulted in the isolati...An organic layer prepared from the seed of Aceriphyllum rossii was studied to identify the active compounds for protein tyrosine phosphatase 1B(PTP1B) inhibition.Bioassay guided fractionation resulted in the isolation of PTP1B inhibitory activity of triterpenes(1-4).These four compounds were identified as aceriphyllic acid C(1),aceriphyllic acid D(2),aceriphyllic acid E(3) and aceriphyllic acid F(4).The isolated 1-4 compounds inhibited PTP1B with IC50 values ranged from(2.1±1.5) μmol/L to(11.2±2.5) μmol/L.Kinetic analysis of PTP1B inhibition by aceriphyllic acid C(1) and aceriphyllic acid D(2) suggested that oleanane-type triterpenes inhibited PTP1B activity in a mixed-type manner.展开更多
Changes in the activities of Δ 5\|3β\|hydroysteroid dehydrogenase(HSD) in testis and adrenal gland, 17β\|hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesic...Changes in the activities of Δ 5\|3β\|hydroysteroid dehydrogenase(HSD) in testis and adrenal gland, 17β\|hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesicle were observed in noise exposed mature rats at the intensity of 85 dB for 8 h/day for 45 days. The results indicated that noise exposed group showed a significant diminution in the activities of androgenic key enzymes Δ 5\|3β and 17β\|HSD, acid phosphatase in testis, prostate and seminal vesicle. There was a significant elevation in the activities of adrenal Δ 5\|3β\|HSD, alkaline phosphatase in testis and other accessory sex organ in noise exposed group. Gonadosomatic, prostatosomatic and seminal vesiculo\|somatic indexes were decreased significantly in noise exposed group. Therefore, it is evident that noise exposure at 85dB exerts a deleterious effect on testicular and adrenocortical activities.展开更多
Hydrolysis of organic phosphorus(P) by soil phosphatases is an important process of P cycling in terrestrial ecosystems, significantly affected by nitrogen(N) and/or P fertilization. However, how soil acid phosphatase...Hydrolysis of organic phosphorus(P) by soil phosphatases is an important process of P cycling in terrestrial ecosystems, significantly affected by nitrogen(N) and/or P fertilization. However, how soil acid phosphatase(ACP) and alkaline phosphatase(ALP) activities respond to N and/or P fertilization and how these responses vary with climatic regions, ecosystem types, and fertilization management remain unclear. This knowledge gap hinders our ability to assess P cycling and availability from a global perspective. We performed a meta-analysis to evaluate the global patterns of soil ACP and ALP activities in response to N and/or P addition. We also examined how climatic regions(arctic to tropical), ecosystem types(cropland, grassland, and forest), and fertilization management(experiment duration and fertilizer type and application rate) affected changes in soil phosphatases after fertilization. It was shown that N fertilizer resulted in 10.1% ± 2.9% increase in soil ACP activity but a minimal effect on soil ALP activity. In contrast, P fertilizer resulted in 7.7% ± 2.6% decrease in soil ACP activity but a small increase in soil ALP activity. The responses of soil ACP and ALP activities to N and/or P fertilization were largely consistent across climatic regions but varied with ecosystem types and fertilization management, and the effects of ecosystem types and fertilization management were enzyme-dependent. Random forest analysis identified climate(mean annual precipitation and temperature) and change in soil pH as the key factors explaining variations in soil ACP and ALP activities. Therefore, N input and ecosystem types should be explicitly disentangled when assessing terrestrial P cycling.展开更多
Phosphatase plays a vital important role in many biological functions due to the dephosphorylation serves varied roles in cellular regulation and signaling.Among the family of phosphatase,alkaline phosphatase(ALP)coul...Phosphatase plays a vital important role in many biological functions due to the dephosphorylation serves varied roles in cellular regulation and signaling.Among the family of phosphatase,alkaline phosphatase(ALP)could act as crucial prognostic indicators for many diseases such as bone diseases and cancer.However,the detection of ALP is mainly limited to in vitro colorimetric method in clinic.Therefore,huge efforts have been paid on the fluorescence imaging that provides a reliable method to detect the real-time and in vivo changes of the level of ALP.In this review,we summarize recent advances in fluorescence imaging of phosphatase,mainly focused on ALP.The imaging probes of phosphatase are mainly classified according to their luminescence mechanisms.In the end,we assessed the challenges and future prospects of phosphatase probes.展开更多
文摘BACKGROUND Chronic hepatitis B often progresses silently toward hepatocellular carcinoma(HCC),a leading cause of mortality worldwide.Early detection of HCC is crucial,yet challenging.AIM To investigate the role of dynamic changes in alkaline phosphatase to prealbumin ratio(APR)in hepatitis B progression to HCC.METHODS Data from 4843 patients with hepatitis B(January 2015 to January 2024)were analyzed.HCC incidence rates in males and females were compared using the log-rank test.Data were evaluated using Kaplan–Meier analysis.The Linear Mixed-Effects Model was applied to track the fluctuation of APR levels over time.Furthermore,Joint Modeling of Longitudinal and Survival data was employed to investigate the temporal relationship between APR and HCC risk.RESULTS The incidence of HCC was higher in males.To ensure the model’s normality assumption,this study applied a logarithmic transformation to APR,yielding ratio.Ratio levels were higher in females(t=5.26,P<0.01).A 1-unit increase in ratio correlated with a 2.005-fold higher risk of HCC in males(95%CI:1.653-2.431)and a 2.273-fold higher risk in females(95%CI:1.620-3.190).CONCLUSION Males are more prone to HCC,while females have higher APR levels.Despite no baseline APR link,rising APR indicates a higher HCC risk.
文摘Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.
文摘BACKGROUND Colorectal cancer(CRC)is a prevalent gastrointestinal malignancy,with its pathogenesis involving dysregulation of multiple genes,including adenomatous polyposis coli and p53.Emerging evidence suggests that microRNA 195(miR195)plays a critical role in carcinogenesis by modulating the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(AKT)signaling pathway through phosphatase and tensin homologue(PTEN),thereby influencing cellular metabolism.Loss of PTEN function leads to hyperactivation of PI3K/AKT signaling pathway,resulting in upregulated expression of lactate dehydrogenase-5(LDH-5)and promoting the tumor progression.AIM To explore the clinical relevance of miR195,LDH-5,and PTEN expression patterns in CRC patient tissues and their association with clinicopathological features and prognosis.METHODS We enrolled 53 CRC patients who received surgical resection at our hospital from January 2020 to February 2022.Fresh tumor tissues and paired adjacent normal tissues(>5 cm from the tumor margin)were collected.The mRNA expression of miR195 was quantified by real-time quantitative polymerase chain reaction,while the protein expression of LDH-5 and PTEN were assessed via immunohistochemistry.Differences in molecular expression between tumor and adjacent normal tissues were compared,along with their correlations with clinicopathological parameters and prognosis.RESULTS The positive rate of miR195 in CRC tissues(35.85%)was significantly lower than that in adjacent normal tissues(90.57%).LDH-5 displayed a higher positive rate(79.25%)in the tissues compared to normal tissues(11.32%),while PTEN expression was markedly reduced in tumors(28.30%vs 94.34%,P<0.05).Elevated expression of miR195 was observed in CRC tissues from patients with earlier tumor,node,metastasis(TNM)stages and without lymph node metastasis.Conversely,higher expression of LDH-5 was associated with advanced TNM stages,lower differentiation grades,and the presence of lymph node metastasis.Additionally,PTEN expression was higher in patients with smaller tumor diameters and no lymph node metastasis(P<0.05).In CRC tissues,miR195 showed a negative correlation with LDH-5(r=-0.883,P=0.015)but a positive correlation with PTEN(r=0.429,P=0.006).LDH-5 was negatively associated with PTEN(r=-0.396,P<0.001).Patients with miR195 positivity,LDH-5 negativity,and PTEN positivity demonstrated significantly better prognosis(P<0.05).CONCLUSION Low miR195 and PTEN expression,coupled high LDH-5 expression could constitutes a hallmark molecular signature of CRC progression.These signature may act as potential markers for diagnosis and disease assessment,and prognostic evaluation in CRC patients,eventually improving CRC management.
基金This study was reviewed and approved by the Ethic Committee of Medical College of Henan Vocational University of Science and Technology(Approval No.HVUYL414101416920231017001)all participants signed a written informed consent.
文摘BACKGROUND Centromere protein A(CENPA)exhibits an increased expression level in primary human rectal cancer tissues,but its role has not been investigated.AIM To clarify the specific role and mechanism of CENPA in rectal cancer progression.METHODS CENPA protein expression in rectal cancer tissues and cell lines were detected.CENPA was overexpressed and knocked down in SW837 and SW480 cells,and proliferation,invasion,apoptosis and epithelial-mesenchymal transition(EMT)marker protein levels were examined.O6-methylguanine DNA methyltransferase(MGMT)promoter methylation was assessed with methylation-specific poly-merase chain reaction.Co-immunoprecipitation assay verified the interaction between MGMT and protein tyrosine phosphatase nonreceptor type 4(PTPN4).SW837 cells with CENPA knockdown were injected subcutaneously into mice,and tumor growth was examined.RESULTS CENPA was upregulated in rectal cancer tissues and cell lines.CENPA overex-pression promoted proliferation,invasion and EMT,and inhibited apoptosis in rectal cancer cells.Whereas CENPA knockdown showed the opposite results.Moreover,CENPA inhibited MGMT expression by promoting DNA methyltrans-ferase 1-mediated MGMT promoter methylation.MGMT knockdown abolished the CENPA knockdown-mediated inhibition of rectal cancer cell progression.MGMT increased PTPN4 protein stability by inhibiting PTPN4 ubiquitination degradation via competing with ubiquitin-conjugating enzyme E2O for interacting with PTPN4.PTPN4 knockdown abolished the inhibitory effects of MGMT overexpression on rectal cancer cell progression.Moreover,CENPA knockdown inhibited xenograft tumor growth in vivo.CONCLUSION CENPA knockdown inhibited rectal cancer cell growth and attenuated xenograft tumor growth through regulating the MGMT/PTPN4 axis.
基金supported by the National Natural Science Foundation of China(No.22064014)the Science and Technology Development Plan Project of Lanzhou(No.2021–1-146)+2 种基金the Science and Technology Project of Gansu Province(Nos.21YF5FA071,21JR7RA538)the Industrial Support Programme for Higher Education Institutions Project(Nos.2023CYZC-69,2024CYCZ-05)the 2023 Gansu Provincial Key Talent Project(No.2023RCXM26)。
文摘The traditional nanozymes-based ratiometric fluorescence sensing platforms usually necessitate the supplementary addition of fluorescent probes,therefore greatly restricting its convenient and broad application.In this study,a highly sensitive and selective ratiometric fluorescence platform for alkaline phosphatase(ALP)detection was established,only employing Prussian blue(PB)nanozymes and a commercially available chromogen of o-phenylenediamine(OPD).PB nanozymes with remarkable peroxidaselike(POD-like)activity can effectively catalyze OPD chromogen to yield 2,3-diaminophenazine(OPDox)with an intense yellow fluorescence at 573 nm emission peak.Target ALP can facilitate ascorbic acid 2-phosphate(AAP)dephosphorylation to generate phosphate and ascorbic acid(AA).Significantly,both these two resultant hydrolysis products could effectively decrease the OPDox generation via a dualpath based inhibition on the PB nanozymes POD-like activity.On the other hand,the generated dehydroascorbic acid(DHAA)from AA oxidation would exclusively react with OPD chromogen to yield3-(dihydroxyethyl)furo[3,4-b]quinoxaline-1-one(DFQ)with a strong blue fluorescent signal at 434nm,which further providing a significant enhancement on the sensing selectivity of ALP detection.As a result,an increased yellow fluorescence of OPDox and decreased blue fluorescence of DFQ could be clearly observed with different ALP addition.A robust linear relationship between the fluorescence ratio of F_(434)/F_(573)and ALP activity ranging from 0.25U/L to 6U/L was obtained,with a low detection limit of 0.112 U/L.This proposed method demonstrates high sensitivity,excellent selectivity,cost-effectiveness,and operational simplicity,yet enabling an effective detection of ALP levels in human serum.
基金Baoding Municipal Science and Technology Plan Project(Project No.:2441ZF089)。
文摘Objective:To investigate the mechanism by which advanced glycation end products(AGEs)promote diabetic kidney disease fibrosis by regulating the tyrosine phosphatase SHP1/SHP2 balance and activating the epidermal growth factor receptor(EGFR)pathway.Methods:Animal experiments and in vitro cell experiments were conducted using Western blot analysis and tissue cell staining to detect the expression of relevant proteins and cellular morphological changes.Results:AGEs disrupt the SHP1/SHP2 balance,activate the EGFR and TGFβpathways,and promote fibrosis in diabetic nephropathy.Conclusion:AGEs regulate the balance of tyrosine phosphatases SHP1/SHP2,activate the EGFR-mediated signaling pathway,promote the release of inflammatory factors,and ultimately lead to fibrosis in diabetic nephropathy through a novel mechanism.
基金funded by National Social Science Foundation if Gansu Province(24JRRA694)Scientific and Technological Development Guiding Plan Project of Lanzhou City(2023-ZD-62,2024-9-52)GanSu Health Industry Planning Project(GSWSKY2024-51).
文摘This review focuses on the metabolic issues related to mitochondrial pyruvate dehydrogenase phosphatase(PDP)in malignant tumors and its potential mechanisms.Recent research on tumor metabolic mechanisms has shown that PDP dysregulation is closely linked to metabolic reprogramming in tumor cells,and potentially promotes tumor.Research has comprehensively explored the structural-functional characteristics of PDP,its metabolic regulatory mechanisms,and its role in various types of malignant tumors.Nevertheless,several questions still exist regarding its potential mechanisms within acetylation,phosphorylation,hypoxia,immune infiltration,mitochondrial metabolism,drug resistance,oxidative phosphorylation,and tumor prognosis.This article intends to summarize the latest research,examine PDP’s potential as a therapeutic target,and propose future research directions to enhance cancer treatment strategies.
文摘In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology.PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity.Accordingly,early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction.On the other hand,recent studies have indicated that PTPN2 has many different roles in different cancer types,which is associated with the complexity of its regulatory network.PTPN2 dephosphorylates and inactivates EGFR,SRC family kinases,JAK1 and JAK3,and STAT1,STAT3,and STAT5 in cell type-and context-dependent manners,which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype.While PTPN2 has been suggested as a potential therapeutic target in cancer treatment,to the best of ourknowledge,no clear treatment protocol has referred to PTPN2.Although there are only few studies that investigated PTPN2 expression in the GI system cancers,which is a potential limitation,the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers.In conclusion,more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors,especially in tumors resistant to therapy.
基金supported by the National Natural Sci ence Foundation of China(No.31672543)the Zhejiang Province“Sannongliufang”Science and Technology Coopera tion Project(No.2020SNLF007),China.
文摘Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infected by eating undercooked meat of animals containing the tissue cysts of this parasite.In immune-competent individuals,T.
文摘The distribution of acid phosphatase activity in nucellar cells of wheat ( Triticum aestivum L.) during degeneration has been studied using the lead precipitation method at the electron microscopic level. Acid phosphatase was localized in the slightly condensed nuclear chromatin in nucellar cells without any sign of ultrastructural degeneration. As the nucellar cells started degenerating, the enzyme activity in the cell was observed, in the order from small vacuoles to cell walls, mitochondria, plastids and endoplasmic reticulum. Enzyme activity was the highest in most components of the nucellar cells adjacent to the embryo sac where the degeneration of nucellar cells was the strongest, but it was not observed in the nuclei of the degenerated nucellar cells. The results indicated that the degeneration of nucellar cells was a progressive and orderly process and supported that the degeneration of nucellar cells was a programmed cell death.
基金Supported by National Major Science and Technology Projects(2009ZX07317-006)National Major Science and Technology Projects(2009ZX07317-009)~~
文摘[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.
基金Supported by the Blue Project of Jiangsu ProvinceNatural Science Foundation of Huai an(SN0777)+1 种基金the Development Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around HongzeLake(HZHL0813)Natural Science Foundation of Huaiyin Institute of Technology(351707077)~~
文摘[Object] The study aimed to supply a reference for evaluating ecotoxicology of soil contaminated with phthalate acid esters(PAEs).[Method] The dynamic effects of DBP and DEHP on activities and kinetics parameters of urease and phosphatase in agro-soil contaminated artificially with DBP and DEHP were studied.[Result] The activities of urease and phosphatase were both inhibited significantly by higher contents of DBP and DEHP in soils compared with CK.The inhabitations increased with increasing DBP and DEHP c...
基金supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health (NIH) and extramural NIH funding(JLM-DE12889 and AR53102)
文摘Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enppl null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enppl gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.
基金Project supported by the National Natural Science Foundation of China (Nos. 30771827 and 20777067)the Key Special Program on the S & T of China for the Pollution Control and Treatment of Water Bodies (No. 2008ZX07421-001)
文摘Due to their toxicity,the increased distribution of microcystins(MCs) has become an important worldwide problem.MCs have been recognized as inhibitors of protein phosphatase 2A(PP2A) through their binding to the PP2A catalytic subunit.However,the exact mechanism of MC toxicity has not been elucidated,especially concerning the cellular response and its autoregulation.To further dissect the role of PP2A in MC-induced toxicity,the present study was undertaken to determine the response of PP2A in human amniotic epithelial(FL) cells treated with microcystin-LR(MCLR),one of the MC congeners.The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity,and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A,as expected.The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A.Furthermore,MCLR altered microtubule post-translational modifications through PP2A.These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR.
文摘Ultrastructural cytochemical techniques and electron microscopy were used for localization of acid phosphatase activity during spermiogenesis in Eriocheir sinemsis. The results showed that: Acid phosphatase was synthesized in the endoplasmic reticulum in the early spermatids. The acid phosphatase was found gradually in nucleus, the membrane of acrosomal vesicle, the cytoplasmic region and the acrosomal tubule. And then the reaction product particles became thicker during the spermiogenesis. In the mature sperm, acid phosphatase was localized in the percutor organ slightly, but it was massive and compact in the acrosomal tubule.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars(Grant No.20091590)State Education Ministry and Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules(Yanbian University),Ministry of Education,China(Grant No.201003)
文摘An organic layer prepared from the seed of Aceriphyllum rossii was studied to identify the active compounds for protein tyrosine phosphatase 1B(PTP1B) inhibition.Bioassay guided fractionation resulted in the isolation of PTP1B inhibitory activity of triterpenes(1-4).These four compounds were identified as aceriphyllic acid C(1),aceriphyllic acid D(2),aceriphyllic acid E(3) and aceriphyllic acid F(4).The isolated 1-4 compounds inhibited PTP1B with IC50 values ranged from(2.1±1.5) μmol/L to(11.2±2.5) μmol/L.Kinetic analysis of PTP1B inhibition by aceriphyllic acid C(1) and aceriphyllic acid D(2) suggested that oleanane-type triterpenes inhibited PTP1B activity in a mixed-type manner.
文摘Changes in the activities of Δ 5\|3β\|hydroysteroid dehydrogenase(HSD) in testis and adrenal gland, 17β\|hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesicle were observed in noise exposed mature rats at the intensity of 85 dB for 8 h/day for 45 days. The results indicated that noise exposed group showed a significant diminution in the activities of androgenic key enzymes Δ 5\|3β and 17β\|HSD, acid phosphatase in testis, prostate and seminal vesicle. There was a significant elevation in the activities of adrenal Δ 5\|3β\|HSD, alkaline phosphatase in testis and other accessory sex organ in noise exposed group. Gonadosomatic, prostatosomatic and seminal vesiculo\|somatic indexes were decreased significantly in noise exposed group. Therefore, it is evident that noise exposure at 85dB exerts a deleterious effect on testicular and adrenocortical activities.
基金financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA23070202 and XDB40020000)the National Natural Science Foundation of China(Nos.41977068 and 41977105)the Programs of Chinese Academy of Sciences(No.QYZDB-SSW-DQC039)。
文摘Hydrolysis of organic phosphorus(P) by soil phosphatases is an important process of P cycling in terrestrial ecosystems, significantly affected by nitrogen(N) and/or P fertilization. However, how soil acid phosphatase(ACP) and alkaline phosphatase(ALP) activities respond to N and/or P fertilization and how these responses vary with climatic regions, ecosystem types, and fertilization management remain unclear. This knowledge gap hinders our ability to assess P cycling and availability from a global perspective. We performed a meta-analysis to evaluate the global patterns of soil ACP and ALP activities in response to N and/or P addition. We also examined how climatic regions(arctic to tropical), ecosystem types(cropland, grassland, and forest), and fertilization management(experiment duration and fertilizer type and application rate) affected changes in soil phosphatases after fertilization. It was shown that N fertilizer resulted in 10.1% ± 2.9% increase in soil ACP activity but a minimal effect on soil ALP activity. In contrast, P fertilizer resulted in 7.7% ± 2.6% decrease in soil ACP activity but a small increase in soil ALP activity. The responses of soil ACP and ALP activities to N and/or P fertilization were largely consistent across climatic regions but varied with ecosystem types and fertilization management, and the effects of ecosystem types and fertilization management were enzyme-dependent. Random forest analysis identified climate(mean annual precipitation and temperature) and change in soil pH as the key factors explaining variations in soil ACP and ALP activities. Therefore, N input and ecosystem types should be explicitly disentangled when assessing terrestrial P cycling.
基金supported by National Key Research and Development Program(No.2018YFA0704003)Basic Research Program of Shenzhen(Nos.JCYJ20170412111100742,JCYJ20180507182413022)+1 种基金Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(No.161032)Guangdong Province Natural Science Foundation of Major Basic Research and Cultivation Project(No.2018B030308003)。
文摘Phosphatase plays a vital important role in many biological functions due to the dephosphorylation serves varied roles in cellular regulation and signaling.Among the family of phosphatase,alkaline phosphatase(ALP)could act as crucial prognostic indicators for many diseases such as bone diseases and cancer.However,the detection of ALP is mainly limited to in vitro colorimetric method in clinic.Therefore,huge efforts have been paid on the fluorescence imaging that provides a reliable method to detect the real-time and in vivo changes of the level of ALP.In this review,we summarize recent advances in fluorescence imaging of phosphatase,mainly focused on ALP.The imaging probes of phosphatase are mainly classified according to their luminescence mechanisms.In the end,we assessed the challenges and future prospects of phosphatase probes.